Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por LIAAD

2016

A Multiobjective Unit Commitment Problem: Minimization of Production Costs and Gas Emissions Best paper award

Autores
Luís A.C. Roque; Dalila B.M.M. Fontes; Fernando A.C.C. Fontes;

Publicação

Abstract

2016

A Quadratic Approach to the Maximum EdgeWeight Clique Problem

Autores
Dalila B.M.M. Fontes;

Publicação

Abstract

2016

A new mixed integer optimal control formulation of UC Problem

Autores
Dalila B.M.M. Fontes;

Publicação

Abstract

2016

A heuristic approach to the maximum edge weight clique problem on sparse networks

Autores
Dalila B.M.M. Fontes;

Publicação

Abstract

2016

LOCAL MARKET STRUCTURE IN A HOTELLING TOWN

Autores
Pinto, AA; Almeida, JP; Parreira, T;

Publicação
JOURNAL OF DYNAMICS AND GAMES

Abstract
We develop a theoretical framework to study the location-price competition in a Hotelling-type network game, extending the Hotelling model, with linear transportation costs, from a line (city) to a network (town). We show the existence of a pure Nash equilibrium price if, and only if, some explicit conditions on the production costs and on the network structure hold. Furthermore, we prove that the local optimal localization of the firms are at the cross-roads of the town.

2016

LOCALIZATION AND PRICES IN THE QUADRATIC HOTELLING MODEL WITH UNCERTAINTY

Autores
Pinto, AA; Parreira, T;

Publicação
JOURNAL OF DYNAMICS AND GAMES

Abstract
For the quadratic Hotelling model, we study the optimal localization and price strategies under incomplete information on the production costs of the firms. We compute explicitly the pure Bayesian-Nash price duopoly equilibrium and we prove that it does not depend upon the distributions of the production costs of the firms, except on their first moments. We find when the maximal differentiation is a local optimum for the localization strategy of both firms.

  • 286
  • 503