Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por LIAAD

2017

Development and Validation of Risk Matrices for Crohn's Disease Outcomes in Patients Who Underwent Early Therapeutic Interventions (vol 11, pg 445, 2017)

Autores
Dias, CC; Rodrigues, PP; Coelho, R; Santos, PM; Fernandes, S; Lago, P; Caetano, C; Rodrigues, Â; Portela, F; Oliveira, A; Ministro, P; Cancela, E; Vieira, AI; Barosa, R; Cotter, J; Carvalho, P; Cremers, I; Trabulo, D; Caldeira, P; Antunes, A; Rosa, I; Moleiro, J; Peixe, P; Herculano, R; Gonçalves, R; Gonçalves, B; Sousa, HT; Contente, L; Morna, H; Lopes, S; Magro, F; on behalf GEDII,;

Publicação
JOURNAL OF CROHNS & COLITIS

Abstract
A previous version of this article contained minor errors in Tables 2, 3 and 4. This has now been corrected, the publisher apologises for the error. © 2016 European Crohn's and Colitis Organisation (ECCO).

2017

Bringing Bayesian networks to bedside: a web-based framework

Autores
Oliveira, R; Ferreira, J; Libanio, D; Dias, CC; Rodrigues, PP;

Publicação
2017 IEEE 30TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS)

Abstract
Bayesian networks are one of the most intuitive statistical models for both estimation, classification and prediction of patients' outcomes. However, the availability of inference software in clinical settings is still limited. This work presents preliminary steps towards the creation of simple web-based forms that can access a powerful Bayesian network inference engine, making the derived models usable at bedside by both the clinicians and the patients themselves.

2017

Improving diagnosis in Obstructive Sleep Apnea with clinical data: a Bayesian network approach

Autores
Ferreira Santos, D; Rodrigues, PP;

Publicação
2017 IEEE 30TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS)

Abstract
In obstructive sleep apnea, respiratory effort is maintained but ventilation decreases/disappears because of the partial/total occlusion in the upper airway. It affects about 4% of men and 2% of women in the world population. The aim was to define an auxiliary diagnostic method that can support the decision to perform polysomnography (standard test), based on risk and diagnostic factors. Our sample performed polysomnography between January and May 2015. Two Bayesian classifiers were used to build the models: Naive Bayes (NB) and Tree augmented Naive Bayes (TAN), using all 39 variables or just a selection of 13. Area under the ROC curve, sensitivity, specificity, predictive values were evaluated using cross-validation. From a collected total of 241 patients, only 194 fulfill the inclusion criteria. 123 (63%) were male, with a mean age of 58 years old. 66 (34%) patients had a normal result and 128 (66%) a diagnostic of obstructive sleep apnea. The AUCs for each model were: NB39 - 72%; TAN39 - 79%; NB13 - 75% and TAN13 - 75%. The high (34%) proportion of normal results confirm the need for a pre-evaluation prior to polysomnography. The constant seeking of a validated model to screen patients with suspicion of obstructive sleep apnea is essential, especially at the level of primary care.

2017

Preface

Autores
Bamidis, P; Konstantinidis, S; Rodrigues, PP;

Publicação
Proceedings - IEEE Symposium on Computer-Based Medical Systems

Abstract

2017

Implementing Guidelines for Causality Assessment of Adverse Drug Reaction Reports: A Bayesian Network Approach

Autores
Rodrigues, PP; Santos, DF; Silva, A; Polónia, J; Vaz, IR;

Publicação
Artificial Intelligence in Medicine - 16th Conference on Artificial Intelligence in Medicine, AIME 2017, Vienna, Austria, June 21-24, 2017, Proceedings

Abstract
In pharmacovigilance, reported cases are considered suspected adverse drug reactions (ADR). Health authorities have thus adopted structured causality assessment methods, allowing the evaluation of the likelihood that a medicine was the causal agent of an adverse reaction. The aim of this work was to develop and validate a new causality assessment support system used in a regional pharmacovigilance centre. A Bayesian network was developed, for which the structure was defined by an expert, aiming at implementing the current guidelines for causality assessment, while the parameters were learnt from 593 completely-filled ADR reports evaluated by the Portuguese Northern Pharmacovigilance Centre expert between 2000 and 2012. Precision, recall and time to causality assessment (TTA) was evaluated, according to the WHO causality assessment guidelines, in a retrospective cohort of 466 reports (April to September 2014) and a prospective cohort of 1041 reports (January to December 2015). Results show that the network was able to easily identify the higher levels of causality (recall above 80%), although strugling to assess reports with a lower level of causality. Nonetheless, the median (Q1:Q3) TTA was 4 (2:8) days using the network and 8 (5:14) days using global introspection, meaning the network allowed a faster time to assessment, which has a procedural deadline of 30 days, improving daily activities in the centre.

2017

Predicting outcomes of gastric endoscopic submucosal dissection using a Bayesian approach: a step for individualized risk assessment

Autores
Libanio, D; Dinis Ribeiro, M; Pimentel Nunes, P; Dias, CC; Rodrigues, PP;

Publicação
ENDOSCOPY INTERNATIONAL OPEN

Abstract
Background and study aims Efficacy and adverse events probabilities influence decisions regarding the best options to manage patients with gastric superficial lesions. We aimed at developing a Bayesian model to individualize the prediction of outcomes after gastric endoscopic submucosal dissection (ESD). Patients and methods Data from 245 gastric ESD were collected, including patient and lesion factors. The two endpoints were curative resection and post-procedural bleeding (PPB). Logistic regression and Bayesian networks were built for each outcome; their predictive value was evaluated in-sample and validated through leave-one-out and cross-validation. Clinical decision support was enhanced by the definition of risk matrices, direct use of Bayesian inference software and by a developed online platform. Results ESD was curative in 85.3% and PPB occurred in 7.7% of patients. In univariate analysis, male sex, ASA status, carcinoma histology, polypoid or depressed morphology, and lesion size >= 20mm were associated with non-curative resection, while ASA status, antithrombotics and lesion size >= 20mm were associated with PPB. Naive Bayesian models presented AUROCs of similar to 80% in the derivation cohort and >= 74% in cross-validation for both outcomes. Risk matrices were computed, showing that lesions with cancer at biopsies, >= 20mm, proximal or in the middle third, and polypoid are more prone to non-curative resection. PPB risk was <5% in lesions <20mm in the absence of antithrombotics. Conclusions The derived Bayesian model presented good discriminative power in the prediction of ESD outcomes and can be used to predict individualized probabilities, improving patient information and supporting clinical and management decisions.

  • 253
  • 503