2025
Autores
Matos, DM; Costa, P; Sobreira, H; Valente, A; Lima, J;
Publicação
INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS
Abstract
With the increasing adoption of mobile robots for transporting components across several locations in industries, congestion problems appear if the movement of these robots is not correctly planned. This paper introduces a fleet management system where a central agent coordinates, plans, and supervises the fleet, mitigating the risk of deadlocks and addressing issues related to delays, deviations between the planned paths and reality, and delays in communication. The system uses the TEA* graph-based path planning algorithm to plan the paths of each agent. In conjunction with the TEA* algorithm, the concepts of supervision and graph-based environment representation are introduced. The system is based on ROS framework and allows each robot to maintain its autonomy, particularly in control and localization, while aligning its path with the plan from the central agent. The effectiveness of the proposed fleet manager is demonstrated in a real scenario where robots operate on a shop floor, showing its successful implementation.
2024
Autores
Silva, RT; Brilhante, M; Sobreira, H; Matos, D; Costa, P;
Publicação
2024 7TH IBERIAN ROBOTICS CONFERENCE, ROBOT 2024
Abstract
Autonomous Mobile Robots (AMRs) and Automated Guided Vehicles (AGVs) have emerged as key innovations in the industry world, with AMRs offering flexibility a nd adaptability for dynamic environments, while AGVs provide high accuracy for repetitive tasks; thus, this research proposes a study of fleets of both AGVs and AMRs to enhance productivity and efficiency in industrial settings. Several tests were performed where the duration of a mission, the success and collision rate, and the average number of disputes per mission were analyzed in order to obtain results. In conclusion, while AGVs tend to be more reliable and consistent in task completion, AMRs offer greater flexibility a nd speed.
2017
Autores
Héber Miguel Plácido Sobreira;
Publicação
Abstract
2025
Autores
Sousa, RB; Sobreira, HM; Martins, JG; Costa, PG; Silva, MF; Moreira, AP;
Publicação
IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC 2025, Funchal, Portugal, April 2-3, 2025
Abstract
Multimodal perception systems enhance the robustness and adaptability of autonomous mobile robots by integrating heterogeneous sensor modalities, improving long-term localisation and mapping in dynamic environments and human-robot interaction. Current mobile platforms often focus on specific sensor configurations and prioritise cost-effectiveness, possibly limiting the flexibility of the user to extend the original robots further. This paper presents a methodology to integrate multimodal perception into a ground mobile platform, incorporating wheel odometry, 2D laser scanners, 3D Light Detection and Ranging (LiDAR), and RGBD cameras. The methodology describes the electronics design to power devices, firmware, computation and networking architecture aspects, and mechanical mounting for the sensory system based on 3D printing, laser cutting, and bending metal sheet processes. Experiments demonstrate the usage of the revised platform in 2D and 3D localisation and mapping and pallet pocket estimation applications. All the documentation and designs are accessible in a public repository. © 2025 IEEE.
2025
Autores
Ribeiro, J; Sobreira, H; Moreira, A;
Publicação
Lecture Notes in Electrical Engineering
Abstract
This paper presents a novel Nonlinear Model Predictive Controller (NMPC) architecture for trajectory tracking of omnidirectional robots. The key innovation lies in the method of handling constraints on maximum velocity and acceleration outside of the optimization process, significantly reducing computation time. The controller uses a simplified process model to predict the robot’s state evolution, enabling real-time cost function minimization through gradient descent methods. The cost function penalizes position and orientation errors as well as control effort variation. Experimental results compare the performance of the proposed controller with a generic Proportional-Derivative (PD) controller and a NMPC with integrated optimization constraints. The findings reveal that the proposed controller achieves higher precision than the PD controller and similar precision to the NMPC with integrated constraints, but with substantially lower computational effort. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.