2024
Autores
Dias, PA; Souza, JC; Rocha, LE; Figueiredo, D; Silva, MF;
Publicação
2024 7TH IBERIAN ROBOTICS CONFERENCE, ROBOT 2024
Abstract
This paper discusses the emerging field of robotics, particularly focusing on motion planning for robotic manipulators. It highlights the need for simplification and standardization in robot implementation processes. Among several tools available, the paper focuses on the MoveIt tool due to its compatibility, popularity, and community contributions. However, the paper acknowledges some resistance in developing new applications with MoveIt, especially for researchers and beginners. To address this, the paper introduces an efficient, modular action server for interacting with the MoveIt framework. This pipeline simplifies parameter reconfiguration and provides a general solution for the motion planning problem. It can calculate trajectories for robotic manipulators without environmental collisions using a single server request and supports operation in different modes. The server was tested on an Universal Robots UR10 manipulator, demonstrating its ability to quickly plan paths for two test operations: an object pick-and-place mission and a collision avoidance test. The results were positive, achieving the set goals with minimal user-server interaction. This work represents a significant step towards more efficient and user-friendly robotic manipulation.
2025
Autores
Nascimento, R; Garcia Gonzalez, DG; Pires, EJS; Filipe, V; F Silva, MF; Rocha, L;
Publicação
IEEE Access
Abstract
The increasing demand for automated quality inspection in modern industry, particularly for transparent and reflective parts, has driven significant interest in vision-based technologies. These components pose unique challenges due to their optical properties, which often hinder conventional inspection techniques. This systematic review analyzes 24 peer-reviewed studies published between 2015 and 2025, aiming to assess the current state of the art in computer vision-based inspection systems tailored to such materials. The review synthesizes recent advancements in imaging setups, illumination strategies, and deep learning-based defect detection methods. It also identifies key limitations in current approaches, particularly regarding robustness under variable industrial conditions and the lack of standardized benchmarks. By highlighting technological trends and research gaps, this work offers valuable insights and directions for future research - emphasizing the need for adaptive, scalable, and industry-ready solutions to enhance the reliability and effectiveness of inspection systems for transparent and reflective parts. © 2025 Elsevier B.V., All rights reserved.
2025
Autores
Dias, PA; de Souza, JPC; Pires, EJS; Filipe, V; Figueiredo, D; Rocha, LF; Silva, MF;
Publicação
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS
Abstract
In an era where robots are becoming an integral part of human quotidian activities, understanding how they function is crucial. Among the inherent building complexities, from electronics to mechanics, path planning emerges as a universal aspect of robotics. The primary contribution of this work is to provide an overview of the current state of robot path planning topics and a comparison between those same algorithms and its inherent characteristics. The path planning concept relies on the process by which an algorithm determines a collision-free path between a start and an end point, optimizing parameters such as energy consumption and distance. The quest for the most effective path planning method has been a long-standing discussion, as the choice of method is highly dependent on the specific application. This review consolidates and elucidates the categories of path planning methods, specifically classical or analytical methods, and computer intelligence methods. In addition, the operational principles of these categories will be explored, discussing their respective advantages and disadvantages, and reinforcing these discussions with relevant studies in the field. This work will focus on the most prevalent and recognized methods within the robotics path planning problem, being mobile robotics or manipulator arms, including Cell Decomposition, A*, Probabilistic Roadmaps, Rapidly-exploring Random Trees, Genetic Algorithms, Particle Swarm Optimization, Ant Colony Optimization, Artificial Potential Fields, Fuzzy, and Neural Networks. Following the detailed explanation of these methods, a comparative analysis of their advantages and drawbacks is organized in a comprehensive table. This comparison will be based on various quality metrics, such as the type of trajectory provided (global or local), the scenario implementation type (real or simulated scenarios), testing environments (static or dynamic), hybrid implementation possibilities, real-time implementation, completeness of the method, consideration of the robot's kinodynamic constraints, use of smoothing techniques, and whether the implementation is online or offline.
2026
Autores
Cordeiro, A; Rocha, LF; Boaventura-Cunha, J; Figueiredo, D; Souza, JP;
Publicação
ROBOTICS AND AUTONOMOUS SYSTEMS
Abstract
Robotic bin-picking is a critical operation in modern industry, which is characterised by the detection, selection, and placement of items from a disordered and cluttered environment, which can be boundary limited or not, e.g. bins, boxes or containers. In this context, perception systems are employed to localise, detect and estimate grasping points. Despite the considerable progress made, from analytical approaches to recent deep learning methods, challenges still remain. This is evidenced by the growing innovation proposing distinct solutions. This paper aims to review perception methodologies developed since 2009, providing detailed descriptions and discussions of their implementation. Additionally, it presents an extensive study, detailing each work, along with a comprehensive overview of the advancements in bin-picking perception.
2025
Autores
Almeida, F; Leão, G; Costa, M; Rocha, D; Sousa, A; da Silva, LG; Rocha, F; Veiga, G;
Publicação
Proceedings of the International Conference on Informatics in Control, Automation and Robotics
Abstract
The textile industry is experiencing rapid advancement, reflected in the adoption of innovative and efficient manufacturing techniques. The automation of clothing sewing systems has the potential to reduce the allocation of repetitive tasks to operators, freeing them for more value-added operations. There are several machines on the market that automatically sew the bottom hem of T-shirts, a key component of the garment that fulfills both functional and aesthetic purposes. However, most of them require the fabric to be positioned manually by an operator. To address this issue, this work presents a solution to automate the process of feeding a T-shirt into a SiRUBA sewing machine using a YuMi dual-arm robot. In this scenario, the T-shirt arrives at the workstation with the main front and back pieces of cloth sewn together, seams facing out, and with no sleeves yet. This setup starts by turning the garment inside out with the aid of an automated hanger, ensuring that the seams are facing inward (as the machine requires), and then using the dual-arm robot to feed the garment into the sewing machine. With our approach, the feeding and hemming process took less than 35 seconds, with a feeding success rate of 98%. Therefore, this work can serve as a steppingstone towards more efficient automated sewing systems within the garment production industry.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.