Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por HASLab

2025

Promoting sustainable and personalized travel behaviors while preserving data privacy

Autores
Brito C.; Pina N.; Esteves T.; Vitorino R.; Cunha I.; Paulo J.;

Publicação
Transportation Engineering

Abstract
Cities worldwide have agreed on ambitious goals regarding carbon neutrality. To do so, policymakers seek ways to foster smarter and cleaner transportation solutions. However, citizens lack awareness of their carbon footprint and of greener mobility alternatives such as public transports. With this, three main challenges emerge: (i) increase users’ awareness regarding their carbon footprint, (ii) provide personalized recommendations and incentives for using sustainable transportation alternatives and, (iii) guarantee that any personal data collected from the user is kept private. This paper addresses these challenges by proposing a new methodology. Created under the FranchetAI project, the methodology combines federated Artificial Intelligence (AI) and Greenhouse Gas (GHG) estimation models to calculate the carbon footprint of users when choosing different transportation modes (e.g., foot, car, bus). Through a mobile application that keeps the privacy of users’ personal information, the project aims at providing detailed reports to inform citizens about their impact on the environment, and an incentive program to promote the usage of more sustainable mobility alternatives.

2025

Exploiting Trusted Execution Environments and Distributed Computation for Genomic Association Tests

Autores
Brito C.V.; Ferreira P.G.; Paulo J.T.;

Publicação
IEEE Journal of Biomedical and Health Informatics

Abstract
Breakthroughs in sequencing technologies led to an exponential growth of genomic data, providing novel biological insights and therapeutic applications. However, analyzing large amounts of sensitive data raises key data privacy concerns, specifically when the information is outsourced to untrusted third-party infrastructures for data storage and processing (e.g., cloud computing). We introduce Gyosa, a secure and privacy-preserving distributed genomic analysis solution. By leveraging trusted execution environments (TEEs), Gyosa allows users to confidentially delegate their GWAS analysis to untrusted infrastructures. Gyosa implements a computation partitioning scheme that reduces the computation done inside the TEEs while safeguarding the users' genomic data privacy. By integrating this security scheme in Glow, Gyosa provides a secure and distributed environment that facilitates diverse GWAS studies. The experimental evaluation validates the applicability and scalability of Gyosa, reinforcing its ability to provide enhanced security guarantees.

2025

KEIGO: Co-designing Log-Structured Merge Key-Value Stores with a Non-Volatile, Concurrency-aware Storage Hierarchy

Autores
Adao, R; Wu, ZJ; Zhou, CJ; Balmau, O; Paulo, J; Macedo, R;

Publicação
PROCEEDINGS OF THE VLDB ENDOWMENT

Abstract
We present Keigo, a concurrency-and workload-aware storage middleware that enhances the performance of log-structured merge key-value stores (LSM KVS) when they are deployed on a hierarchy of storage devices. The key observation behind Keigo is that there is no one-size-fits-all placement of data across the storage hierarchy that optimizes for all workloads. Hence, to leverage the benefits of combining different storage devices, Keigo places files across different devices based on their parallelism, I/O bandwidth, and capacity. We introduce three techniques-concurrency-aware data placement, persistent read-only caching, and context-based I/O differentiation. Keigo is portable across different LSMs, is adaptable to dynamic workloads, and does not require extensive profiling. Our system enables established production KVS such as RocksDB, LevelDB, and Speedb to benefit from heterogeneous storage setups. We evaluate Keigo using synthetic and realistic workloads, showing that it improves the throughput of production-grade LSMs up to 4x for write-and 18x for read-heavy workloads when compared to general-purpose storage systems and specialized LSM KVS.

2025

Modelling sustainability in cyber-physical systems: A systematic mapping study

Autores
Barisic, A; Cunha, J; Ruchkin, I; Moreira, A; Araújo, J; Challenger, M; Savic, D; Amaral, V;

Publicação
SUSTAINABLE COMPUTING-INFORMATICS & SYSTEMS

Abstract
Supporting sustainability through modelling and analysis has become an active area of research in Software Engineering. Therefore, it is important and timely to survey the current state of the art in sustainability in Cyber-Physical Systems (CPS), one of the most rapidly evolving classes of complex software systems. This work presents the findings of a Systematic Mapping Study (SMS) that aims to identify key primary studies reporting on CPS modelling approaches that address sustainability over the last 10 years. Our literature search retrieved 2209 papers, of which 104 primary studies were deemed relevant fora detailed characterisation. These studies were analysed based on nine research questions designed to extract information on sustainability attributes, methods, models/meta-models, metrics, processes, and tools used to improve the sustainability of CPS. These questions also aimed to gather data on domain-specific modelling approaches and relevant application domains. The final results report findings for each of our questions, highlight interesting correlations among them, and identify literature gaps worth investigating in the near future.

2025

Let's Talk About It: Making Scientific Computational Reproducibility Easy

Autores
Costa, L; Barbosa, S; Cunha, J;

Publicação
CoRR

Abstract

2025

A Dataset For Computational Reproducibility

Autores
Costa, L; Barbosa, S; Cunha, J;

Publicação
CoRR

Abstract

  • 7
  • 262