Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por HASLab

2025

A Systematic Review of Security Communication Strategies: Guidelines and Open Challenges

Autores
Carreira, C; Mendes, A; Ferreira, JF; Christin, N;

Publicação
CoRR

Abstract

2025

InfraFix: Technology-Agnostic Repair of Infrastructure as Code

Autores
Saavedra, N; Ferreira, JF; Mendes, A;

Publicação
CoRR

Abstract

2025

Risk Assessment Profiles for Caregiver Burden in Family Caregivers of Persons Living with Alzheimer's Disease: An Exploratory Study with Machine Learning

Autores
Brito, L; Cepa, B; Brito, C; Leite, A; Pereira, MG;

Publicação
EUROPEAN JOURNAL OF INVESTIGATION IN HEALTH PSYCHOLOGY AND EDUCATION

Abstract
Alzheimer's disease (AD) places a profound global challenge, driven by its escalating prevalence and the multifaceted strain it places on individuals, families, and societies. Family caregivers (FCs), who are pivotal in supporting family members with AD, frequently endure substantial emotional, physical, and psychological demands. To better understand the determinants of family caregiving strain, this study employed machine learning (ML) to develop predictive models identifying factors that contribute to caregiver burden over time. Participants were evaluated across sociodemographic clinical, psychophysiological, and psychological domains at baseline (T1; N = 130), six months (T2; N = 114), and twelve months (T3; N = 92). Results revealed three distinct risk profiles, with the first focusing on T2 data, highlighting the importance of distress, forgiveness, age, and heart rate variability. The second profile integrated T1 and T2 data, emphasizing additional factors like family stress. The third profile combined T1 and T2 data with sociodemographic and clinical features, underscoring the importance of both assessment moments on distress at T2 and forgiveness at T1 and T2, as well as family stress at T1. By employing computational methods, this research uncovers nuanced patterns in caregiver burden that conventional statistical approaches might overlook. Key drivers include psychological factors (distress, forgiveness), physiological markers (heart rate variability), contextual stressors (familial dynamics, sociodemographic disparities). The insights revealed enable early identification of FCs at higher risk of burden, paving the way for personalized interventions. Such strategies are urgently needed as AD rates rise globally, underscoring the imperative to safeguard both patients and the caregivers who support them.

2025

Multi-Partner Project: Green.Dat.AI: A Data Spaces Architecture for Enhancing Green AI Services

Autores
Chrysakis I.; Agorogiannis E.; Tsampanaki N.; Vourtzoumis M.; Chondrodima E.; Theodoridis Y.; Mongus D.; Capper B.; Wagner M.; Sotiropoulos A.; Coelho F.A.; Brito C.V.; Protopapas P.; Brasinika D.; Fergadiotou I.; Doulkeridis C.;

Publicação
Proceedings Design Automation and Test in Europe Date

Abstract
The concept of data spaces has emerged as a structured, scalable solution to streamline and harmonize data sharing across established ecosystems. Simultaneously, the rise of AI services enhances the extraction of predictive insights, operational efficiency, and decision-making. Despite the potential of combining these two advancements, integration remains challenging: data spaces technology is still developing, and AI services require further refinement in areas like ML workflow orchestration and energy-efficient ML algorithms. In this paper, we introduce an integrated architectural framework, developed under the Green.Dat.AI project, that unifies the strengths of data spaces and AI to enable efficient, collaborative data sharing across sectors. A practical application is illustrated through a smart farming use case, showcasing how AI services within a data space can advance sustainable agricultural innovation. Integrating data spaces with AI services thus maximizes the value of decentralized data while enhancing efficiency through a powerful combination of data and AI capabilities.

2025

Exploiting Trusted Execution Environments and Distributed Computation for Genomic Association Tests

Autores
Brito, V; Ferreira, G; Paulo, T;

Publicação
IEEE Journal of Biomedical and Health Informatics

Abstract
Breakthroughs in sequencing technologies led to an exponential growth of genomic data, providing novel biological insights and therapeutic applications. However, analyzing large amounts of sensitive data raises key data privacy concerns, specifically when the information is outsourced to untrusted third-party infrastructures for data storage and processing (e.g., cloud computing). We introduce Gyosa, a secure and privacy-preserving distributed genomic analysis solution. By leveraging trusted execution environments (TEEs), Gyosa allows users to confidentially delegate their GWAS analysis to untrusted infrastructures. Gyosa implements a computation partitioning scheme that reduces the computation done inside the TEEs while safeguarding the users' genomic data privacy. By integrating this security scheme in Glow, Gyosa provides a secure and distributed environment that facilitates diverse GWAS studies. The experimental evaluation validates the applicability and scalability of Gyosa, reinforcing its ability to provide enhanced security guarantees. © 2013 IEEE.

2025

Machine Learning Regression-Based Prediction for Improving Performance and Energy Consumption in HPC Platforms

Autores
Coelho, M; Ocana, K; Pereira, A; Porto, A; Cardoso, DO; Lorenzon, A; Oliveira, R; Navaux, POA; Osthoff, C;

Publicação
HIGH PERFORMANCE COMPUTING, CARLA 2024

Abstract
High-performance computing is pivotal for processing large datasets and executing complex simulations, ensuring faster and more accurate results. Improving the performance of software and scientific workflows in such environments requires careful analysis of their computational behavior and energy consumption. Therefore, maximizing computational throughput in these environments, through adequate software configuration and resource allocation, is essential for improving performance. The work presented in this paper focuses on leveraging regression-based machine learning and decision trees to analyze and optimize resource allocation in high-performance computing environments based on application's performance and energy metrics. Applied to a bioinformatics case study, these models enable informed decision-making by selecting the appropriate computing resources to enhance the performance of a phylogenomics software. Our contribution is to better explore and understand the efficient resource management of supercomputers, namely Santos Dumont. We show that the predictions for application's execution time using the proposed method are accurate for various amounts of computing nodes, while energy consumption predictions are less precise. The application parameters most relevant for this work are identified and the relative importance of each application parameter to the accuracy of the prediction is analysed.

  • 5
  • 259