2022
Autores
Costa, L; Ribeiro, AN;
Publicação
INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, ISDA 2021
Abstract
The process of migrating from a monolithic to a microservices based architecture is currently described as a form of modernizing applications. The core principles of microservices, which mostly reside in achieving loose coupling between the services, highly depend on the implementation approaches used. Being microservices a complete change of paradigm that contrasts with the traditional way of developing software, the current lack of established principles often results in implementations that conflict with its alleged benefits. Given its distributed nature, performance is affected, but specific implementation patterns can further impact it. This paper aims to address the impact that microservices-based solutions, featuring different implementation patterns, have on performance and how it compares with monolithic applications. To do so, benchmarks are conducted over one application developed following a traditional monolithic approach, and two equivalent microservices-based implementations featuring distinct inter-service communication mechanisms and data management methodologies.
2022
Autores
Coelho, F; Silva, F; Goncalves, C; Bessa, R; Alonso, A;
Publicação
2022 FOURTH INTERNATIONAL CONFERENCE ON BLOCKCHAIN COMPUTING AND APPLICATIONS (BCCA)
Abstract
This paper presents a data market aimed at trading energy forecasts data. The system architecture is built using blockchain as a service, allowing access to data streams and establishing a distributed settlement between stakeholders. Energy Forecasts data is presented as the commodity traded in the market, whose settlement is provided through the blockchain on the basis of the extracted value provided by market stakeholders. Our proposal allows market stakeholders to acquire energy forecasts and pay according to the data accuracy, solving the confidentiality problem of freely sharing data. A data quality reward is introduced, steering the compensation sent to market participants. The data market design is presented and an evaluation campaign is performed, showing that the data market produced functionally valid results in comparison with the results achieved with a central simulated approach. Moreover, results show that the data market architecture is able to scale.
2022
Autores
Parente, J; Alonso, AN; Coelho, F; Vinagre, J; Bastos, P;
Publicação
2022 FOURTH INTERNATIONAL CONFERENCE ON BLOCKCHAIN COMPUTING AND APPLICATIONS (BCCA)
Abstract
As blockchains go beyond cryptocurrencies into applications in multiple industries such as Insurance, Healthcare and Banking, handling personal or sensitive data, data access control becomes increasingly relevant. Access control mechanisms proposed so far are mostly based on requester identity, particularly for permissioned blockchain platforms, and are limited to binary, all-or-nothing access decisions. This is the case with Hyperledger Fabric's native access control mechanisms and, as permission updates require consensus, these fall short regarding the flexibility required to address GDPR-derived policies and client consent management. We propose SDAM, a novel access control mechanism for Fabric that enables fine-grained and dynamic control policies, using both contextual and resource attributes for decisions. Instead of binary results, decisions may also include mandatory data transformations as to conform with the expressed policy, all without modifications to Fabric. Results show that SDAM's overhead w.r.t baseline Fabric is acceptable. The scalability of the approach w.r.t to the number of concurrent clients is also evaluated and found to follow Fabric's.
2022
Autores
Pereira, K; Vinagre, J; Alonso, AN; Coelho, F; Carvalho, M;
Publicação
Machine Learning and Principles and Practice of Knowledge Discovery in Databases - International Workshops of ECML PKDD 2022, Grenoble, France, September 19-23, 2022, Proceedings, Part II
Abstract
The application of machine learning to insurance risk prediction requires learning from sensitive data. This raises multiple ethical and legal issues. One of the most relevant ones is privacy. However, privacy-preserving methods can potentially hinder the predictive potential of machine learning models. In this paper, we present preliminary experiments with life insurance data using two privacy-preserving techniques: discretization and encryption. Our objective with this work is to assess the impact of such privacy preservation techniques in the accuracy of ML models. We instantiate the problem in three general, but plausible Use Cases involving the prediction of insurance claims within a 1-year horizon. Our preliminary experiments suggest that discretization and encryption have negligible impact in the accuracy of ML models. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
2022
Autores
Proença, J; Lumpe, M;
Publicação
Sci. Comput. Program.
Abstract
2022
Autores
Proença, J; Borrami, S; de Nova, JS; Pereira, D; Nandi, GS;
Publicação
Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification - 4th International Conference, RSSRail 2022, Paris, France, June 1-2, 2022, Proceedings
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.