Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Leonardo Machado Ferreira

2025

SHAPing Latent Spaces in Facial Attribute Classification Models

Autores
Ferreira, Leonardo; Gonçalves, Tiago; Neto, Pedro C.; Sequeira, Ana; Mamede, Rafael; Oliveira, Mafalda;

Publicação

Abstract
This study investigates the use of SHAP (SHapley Additive exPlanations) values as an explainable artificial intelligence (xAI) technique applied on a facial attribute classification task. We analyse the consistency of SHAP value distributions across diverse classifier architectures that share the same feature extractor, revealing that key features driving attribute classification remain stable regardless of classifier architecture. Our findings highlight the challenges in interpreting SHAP values at the individual sample level, as their reliability depends on the model’s ability to learn distinct class-specific features; models exploiting inter-class correlations yield less representative SHAP explanations. Furthermore, pixel-level SHAP analysis reveals that superior classification accuracy does not necessarily equate to meaningful semantic understanding; notably, despite FaceNet exhibiting lower performance than CLIP, it demonstrated a more nuanced grasp of the underlying class attributes. Finally, we address the computational scalability of SHAP, demonstrating that KernelExplainer becomes infeasible for high-dimensional pixel data, whereas DeepExplainer and GradientExplainer offer more practical alternatives with trade-offs. Our results suggest that SHAP is most effective for small to medium feature sets or tabular data, providing interpretable and computationally manageable explanations.