2018
Autores
Migueis, VL; Freitas, A; Garcia, PJV; Silva, A;
Publicação
DECISION SUPPORT SYSTEMS
Abstract
The early classification of university students according to their potential academic performance can be a useful strategy to mitigate failure, to promote the achievement of better results and to better manage resources in higher education institutions. This paper proposes a two-stage model, supported by data mining techniques, that uses the information available at the end of the first year of students' academic career (path) to predict their overall academic performance. Unlike most literature on educational data mining, academic success is inferred from both the average grade achieved and the time taken to conclude the degree. Furthermore, this study proposes to segment students based on the dichotomy between the evidence of failure or high performance at the beginning of the degree program, and the students' performance levels predicted by the model. A data set of 2459 students, spanning the years from 2003 to 2015, from a European Engineering School of a public research University, is used to validate the proposed methodology. The empirical results demonstrate the ability of the proposed model to predict the students' performance level with an accuracy above 95%, in an early stage of the students' academic path. It is found that random forests are superior to the other classification techniques that were considered (decision trees, support vector machines, naive Bayes, bagged trees and boosted trees). Together with the prediction model, the suggested segmentation framework represents a useful tool to delineate the optimum strategies to apply, in order to promote higher performance levels and mitigate academic failure, overall increasing the quality of the academic experience provided by a higher education institution.
2018
Autores
Rodrigues, JC; Freitas, A; Garcia, P; Maia, C; Pierre Favre, M;
Publicação
2018 3RD INTERNATIONAL CONFERENCE OF THE PORTUGUESE SOCIETY FOR ENGINEERING EDUCATION (CISPEE)
Abstract
Doctoral programmes are facing several challenges in modern societies. The societal role of the University, funded by the state, requires it to: a) increase the offer and admission of third cycle students; b) to reach industry/companies expectations; c) to ensure reasonable employability prospects for the PhD candidates. With the current demography, most candidates can only find a job in industry/companies. Therefore, significant pressure is being put on doctoral programmes to include transferable skills in their curriculum. This paper presents a course "Fit for Industry?" aiming at filling this need. The course design methodology is presented in detail. It includes: a) the involvement of industry since its inception; b) the joint identification of a small number of key competencies to be addressed; c) the inclusion of assessment and feedback mechanisms in its design; d) an immersive and international dimension. It was found that the course had a profound impact on the candidates' perceptions of industry and valued by industry participants. Other stakeholders, such as PhD supervisors, also had a positive perception. The paper concludes with recommendations for those willing to replicate the course locally.
2019
Autores
Andrade, PP; Garcia, PJV; Correia, CM; Kolb, J; Carvalho, MI;
Publicação
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Abstract
The estimation of atmospheric turbulence parameters is of relevance for the following: (a) site evaluation and characterization; (b) prediction of the point spread function; (c) live assessment of error budgets and optimization of adaptive optics performance; (d) optimization of fringe trackers for long baseline optical interferometry. The ubiquitous deployment of Shack-Hartmann wavefront sensors in large telescopes makes them central for atmospheric turbulence parameter estimation via adaptive optics telemetry. Several methods for the estimation of the Fried parameter and outer scale have been developed, most of which are based on the fitting of Zernike polynomial coefficient variances reconstructed from the telemetry. The non-orthogonality of Zernike polynomial derivatives introduces modal cross coupling, which affects the variances. Furthermore, the finite resolution of the sensor introduces aliasing. In this article the impact of these effects on atmospheric turbulence parameter estimation is addressed with simulations. It is found that cross-coupling is the dominant bias. An iterative algorithm to overcome it is presented. Simulations are conducted for typical ranges of the outer scale (4-32 m), Fried parameter (10 cm) and noise in the variances (signal-to-noise ratio of 10 and above). It is found that, using the algorithm, both parameters are recovered with sub-per cent accuracy.
2025
Autores
Mróz, P; Dong, SB; Mérand, A; Shangguan, JY; Woillez, J; Gould, A; Udalski, A; Eisenhauer, F; Ryu, YH; Wu, ZX; Liu, ZK; Yang, HJ; Bourdarot, G; Defrère, D; Drescher, A; Fabricius, M; Garcia, P; Genzel, R; Gillessen, S; Hönig, SF; Kreidberg, L; Le Bouquin, JB; Lutz, D; Millour, F; Ott, T; Paumard, T; Sauter, J; Shimizu, TT; Straubmeier, C; Subroweit, M; Widmann, F; GRAVITY Collaboration; Szymanski, MK; Soszynski, I; Pietrukowicz, P; Kozlowski, S; Poleski, R; Skowron, J; Ulaczyk, K; Gromadzki, M; Rybicki, K; Iwanek, P; Wrona, M; Mróz, MJ; OGLE Collaboration; Albrow, MD; Chung, SJ; Han, C; Hwang, KH; Jung, YK; Shin, IG; Shvartzvald, Y; Yee, JC; Zang, W; Cha, SM; Kim, DJ; Kim, SL; Lee, CU; Lee, DJ; Lee, Y; Park, BG; Pogge, RW; KMTNet Collaboration;
Publicação
ASTROPHYSICAL JOURNAL
Abstract
Interferometric observations of gravitational microlensing events offer an opportunity for precise, efficient, and direct mass and distance measurements of lensing objects, especially those of isolated neutron stars and black holes. However, such observations have previously been possible for only a handful of extremely bright events. The recent development of a dual-field interferometer, GRAVITY Wide, has made it possible to reach out to significantly fainter objects and increase the pool of microlensing events amenable to interferometric observations by 2 orders of magnitude. Here, we present the first successful observation of a microlensing event with GRAVITY Wide and the resolution of microlensed images in the event OGLE-2023-BLG-0061/KMT-2023-BLG-0496. We measure the angular Einstein radius of the lens with subpercent precision, theta E = 1.280 +/- 0.009 mas. Combined with the microlensing parallax detected from the event light curve, the mass and distance to the lens are found to be 0.472 +/- 0.012 M circle dot and 1.81 +/- 0.05 kpc, respectively. We present the procedure for the selection of targets for interferometric observations and discuss possible systematic effects affecting GRAVITY Wide data. This detection demonstrates the capabilities of the new instrument, and it opens up completely new possibilities for the follow-up of microlensing events and future routine discoveries of isolated neutron stars and black holes.
2025
Autores
Abd El Dayem, K; Abuter, R; Aimar, N; Seoane, PA; Amorim, A; Berger, JP; Bonnet, H; Bourdarot, G; Brandner, W; Cardoso, V; Clénet, Y; Davies, R; de Zeeuw, PT; Drescher, A; Eckart, A; Eisenhauer, F; Feuchtgruber, H; Finger, G; Schreiber, NMF; Foschi, A; Garcia, P; Gendron, E; Genzel, R; Gillessen, S; Hartl, M; Haubois, X; Haussmann, F; Henning, T; Hippler, S; Horrobin, M; Jochum, L; Jocou, L; Kaufer, A; Kervella, P; Lacour, S; Lapeyrère, V; Le Bouquin, JB; Léna, P; Lutz, D; Mang, F; More, N; Osorno, J; Ott, T; Paumard, T; Perraut, K; Perrin, G; Rabien, S; Ribeiro, DC; Bordoni, MS; Scheithauer, S; Shangguan, J; Shimizu, T; Stadler, J; Straub, O; Straubmeier, C; Sturm, E; Tacconi, LJ; Urso, I; Vincent, F; von Fellenberg, SD; Wieprecht, E; Woillez, J;
Publicação
ASTRONOMY & ASTROPHYSICS
Abstract
Aims. We investigate the presence of a Yukawa-like correction to Newtonian gravity at the Galactic Center, leading to a new upper limit on the intensity of such a correction. Methods. We performed a Markov chain Monte Carlo (MCMC) analysis using the astrometric and spectroscopic data of star S2 collected at the Very Large Telescope by GRAVITY, NACO, and SINFONI instruments, covering the period from 1992 to 2022. Results. The precision of the GRAVITY instrument allows us to derive the most stringent upper limit at the Galactic Center for the intensity of the Yukawa contribution (proportional to alpha e(-lambda r)) of |alpha|< 0.003 for a scale length of lambda = 3 & sdot; 10(13) m (similar to 200 AU). This is an improvement on all estimates obtained in previous works by roughly one order of magnitude.
2025
Autores
Winterhalder, TO; Kammerer, J; Lacour, S; Mérand, A; Nowak, M; Stolker, T; Balmer, WO; Marleau, GD; Abuter, R; Amorim, A; Asensio-Torres, R; Berger, JP; Beust, H; Blunt, S; Bonnefoy, M; Bonnet, H; Bordoni, MS; Bourdarot, G; Brandner, W; Cantalloube, F; Caselli, P; Charnay, B; Chauvin, G; Chavez, A; Choquet, E; Christiaens, V; Clénet, Y; du Foresto, VC; Cridland, A; Davies, R; Dembet, R; Dexter, J; Drescher, A; Duvert, G; Eckart, A; Eisenhauer, F; Schreiber, NMF; Garcia, P; Lopez, RG; Gardner, T; Gendron, E; Genzel, R; Gillessen, S; Girard, JH; Grant, S; Haubois, X; el, GH; Henning, T; Hinkley, S; Hippler, S; Houlle, M; Hubert, Z; Jocou, L; Keppler, M; Kervella, P; Kreidberg, L; Kurtovic, NT; Lagrange, AM; Lapeyrere, V; Le Bouquin, JB; Lutz, D; Maire, AL; Mang, F; Molliere, P; Mordasi, C; Mouillet, D; Nasedkin, E; Ott, T; Otten, GPPL; Paladini, C; Paumard, T; Perraut, K; Perrin, G; Pourre, N; Pueyo, L; Ribeiro, D; Rickman, E; Rustamkulov, Z; Shangguan, J; Shimizu, T; Sing, D; Stadler, J; Straub, O; Straubmeier, C; Sturm, E; Tacconi, LJ; van Dishoeck, EF; Vigan, A; Vincent, F; von Fellenberg, SD; Wang, JJ; Widmann, F; Woillez, J; Yazici, S; GRAVITY Collaboration;
Publicação
ASTRONOMY & ASTROPHYSICS
Abstract
Context. Inferring the likely formation channel of giant exoplanets and brown dwarf companions from orbital and atmospheric observables remains a formidable challenge. Further and more precise directly measured dynamical masses of these companions are required to inform and gauge formation, evolutionary, and atmospheric models. We present an updated study of the recently discovered companion to HIP 99770 based on observations conducted with the near-infrared interferometer VLTI/GRAVITY.Aims. Through renewed orbital and spectral analyses based on the GRAVITY data, we characterise HIP 99770 b to better constrain its orbit, dynamical mass, and atmospheric properties, as well as to shed light on its likely formation channel.Methods. Upon inclusion of the new high-precision astrometry epoch, we ran an orbit fit to further constrain the dynamical mass of the companion and the orbit solution. We also analysed the GRAVITY K-band spectrum, placing it into context with literature data, and extracting magnitude, age, spectral type, bulk properties and atmospheric characteristics of HIP 99770 b.Results. We detected the companion at a radial separation of 417 mas from its host. The new orbit fit yields a dynamical mass of 17-5+6 MJup and an eccentricity of 0.31-0.12+0.06. We also find that additional relative astrometry epochs in the future will not enable further constraints on the dynamical mass due to the dominating relative uncertainty on the Hipparcos-Gaia proper motion anomaly that is used in the orbit-fitting routine. The publication of Gaia DR4 will likely ease this predicament. Based on the spectral analysis, we find that the companion is consistent with spectral type L8 and exhibits a potential metal enrichment in its atmosphere. Adopting the AMES-DUSTY model to infer its age, within its dynamical mass constraint the companion conceivably corresponds to either a younger (28-14+15 Myr) object with a mass just below the deuterium-burning limit or an older (119-10+37 Myr) body with a mass just above the deuterium-burning limit.Conclusions. These results do not yet allow for a definite inference of the companion's formation channel. Nevertheless, the new constraints on its bulk properties and the additional GRAVITY spectrum presented here will aid future efforts to determine the formation history of HIP 99770 b.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.