Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Paulo Jorge Garcia

2013

Pre-main-sequence binaries with tidally disrupted discs: the Br gamma in HD 104237

Autores
Garcia, PJV; Benisty, M; Dougados, C; Bacciotti, F; Clausse, JM; Massi, F; Merand, A; Petrov, R; Weigelt, G;

Publicação
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY

Abstract
Active pre-main-sequence binaries with separations of around 10 stellar radii present a wealth of phenomena unobserved in common systems. The study of these objects is extended from classical T Tauri stars to the Herbig Ae star HD 104237. The primary has a mass 2.2 +/- 0.2 M-circle dot and secondary 1.4 +/- 0.3 M-circle dot. Spectrointerferometry with the VLTI/AMBER in the K-band continuum and the Br gamma line is presented. It is found that the K-band continuum squared visibilities are compatible with a circumbinary disc with a radius of similar to 0.5 AU. However, a significant fraction (similar to 50 per cent) of the flux is unresolved and not fully accounted by the stellar photospheres. The stars probably do not hold circumstellar discs, in addition to the circumbinary disc, due to the combined effects of inner magnetospheric truncation and outer tidal truncation. This unresolved flux likely arises in compact structures inside the tidally disrupted circumbinary disc. Most (greater than or similar to 90 per cent) of the Br gamma line emission is unresolved. The line-to-continuum spectroastrometry shifts in time, along the direction of the Ly alpha jet known to be driven by the system. The shift is anticorrelated with the Br gamma equivalent width. It is shown that the unresolved Br gamma emission cannot originate in the jet but instead is compatible with stellar emission from the orbiting binary components. The increase in the absolute value of the equivalent width of the line takes place at periastron passage; it could arise in an accretion burst, a flare or in the increase in effective size of the emission region by the interaction of the magnetospheres. The binary longitude of the ascending node is found to be Omega = (235 +/- 3)degrees and the orbit retrograde. The origin of the jet is revisited. The tidal disruption of the circumstellar discs creates difficulties to ejection models that rely on stellar magnetosphere and disc coupling. A scenario of a stellar wind collimated by a circumbinary disc wind is suggested.

2018

Peak-locking centroid bias in Shack-Hartmann wavefront sensing

Autores
Anugu, N; Garcia, PJV; Correia, CM;

Publicação
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY

Abstract
Shack-Hartmann wavefront sensing relies on accurate spot centre measurement. Several algorithms were developed with this aim, mostly focused on precision, i.e. minimizing random errors. In the solar and extended scene community, the importance of the accuracy (bias error due to peak-locking, quantization, or sampling) of the centroid determination was identified and solutions proposed. But these solutions only allow partial bias corrections. To date, no systematic study of the bias error was conducted. This article bridges the gap by quantifying the bias error for different correlation peak-finding algorithms and types of sub-aperture images and by proposing a practical solution to minimize its effects. Four classes of sub-aperture images (point source, elongated laser guide star, crowded field, and solar extended scene) together with five types of peak-finding algorithms (1D parabola, the centre of gravity, Gaussian, 2D quadratic polynomial, and pyramid) are considered, in a variety of signal-to-noise conditions. The best performing peak-finding algorithm depends on the sub-aperture image type, but none is satisfactory to both bias and random errors. A practical solution is proposed that relies on the antisymmetric response of the bias to the sub-pixel position of the true centre. The solution decreases the bias by a factor of similar to 7 to values of less than or similar to 0.02 pix. The computational cost is typically twice of current cross-correlation algorithms.

2020

The ORP on-sky community access program for adaptive optics instrumentation development

Autores
Morris, T; Osborn, J; Reyes, M; Montilla, I; Rousset, G; Gendron, E; Fusco, T; Neichel, B; Esposito, S; Garcia, PJV; Kulcsar, C; Correia, C; Beuzit, JL; Bharmal, NA; Bardou, L; Staykov, L; Bonaccini Calia, D;

Publicação
Proceedings of SPIE - The International Society for Optical Engineering

Abstract
On-sky testing of new instrumentation concepts is required before they can be incorporated within facility-class instrumentation with certainty that they will work as expected within a real telescope environment. Increasingly, many of these concepts are not designed to work in seeing-limited conditions and require an upstream adaptive optics system for testing. Access to on-sky AO systems to test such systems is currently limited to a few research groups and observatories worldwide, leaving many concepts unable to be tested. A pilot program funded through the H2020 OPTICON program offering up to 15 nights of on-sky time at the CANARY Adaptive Optics demonstrator is currently running but this ends in 2021. Pre-run and on-sky support is provided to visitor experiments by the CANARY team. We have supported 6 experiments over this period, and plan one more run in early 2021. We have recently been awarded for funding through the H2020 OPTICON-RADIO PILOT call to continue and extend this program up until 2024, offering access to CANARY at the 4.2m William Herschel Telescope and 3 additional instruments and telescopes suitable for instrumentation development. Time on these facilities will be open to researchers from across the European research community and time will be awarded by answering a call for proposals that will be assessed by an independent panel of instrumentation experts. Unlike standard observing proposals we plan to award time up to 2 years in advance to allow time for the visitor instrument to be delivered. We hope to announce the first call in mid-2021. Here we describe the facilities offered, the support available for on-sky testing and detail the eligibility and application process. © 2020 SPIE.

2023

Integrated turbulence parameters' estimation from NAOMI adaptive optics telemetry data

Autores
Morujao, N; Correia, C; Andrade, P; Woillez, J; Garcia, P;

Publicação
ASTRONOMY & ASTROPHYSICS

Abstract
Context. Monitoring turbulence parameters is crucial in high-angular resolution astronomy for various purposes, such as optimising adaptive optics systems or fringe trackers. The former systems are present at most modern observatories and will remain significant in the future. This makes them a valuable complementary tool for the estimation of turbulence parameters. Aims. The feasibility of estimating turbulence parameters from low-resolution sensors remains untested. We performed seeing estimates for both simulated and on-sky telemetry data sourced from the new adaptive optics module installed on the four Auxiliary Telescopes of the Very Large Telescope Interferometer. Methods. The seeing estimates were obtained from a modified and optimised algorithm that employs a chi-squared modal fitting approach to the theoretical von Karman model variances. The algorithm was built to retrieve turbulence parameters while simultaneously estimating and accounting for the remaining and measurement error. A Monte Carlo method was proposed for the estimation of the statistical uncertainty of the algorithm. Results. The algorithm is shown to be able to achieve per-cent accuracy in the estimation of the seeing with a temporal horizon of 20 s on simulated data. A (0.76 '' +/- 1.2%vertical bar(stat) +/- 1.2%vertical bar(sys)) median seeing was estimated from on-sky data collected from 2018 to 2020. The spatial distribution of the Auxiliary Telescopes across the Paranal Observatory was found to not play a role in the value of the seeing.

2024

Advanced visualization of adaptive optics telemetry data

Autores
Silva, B; Gomes, T; Correia, CM; Garcia, PJ;

Publicação
ADAPTIVE OPTICS SYSTEMS IX

Abstract
The Adaptive Optics Telemetry (AOT) format has recently been proposed to standardize the telemetry data generated by adaptive optics systems. Yet its usability remains limited by the user's programming expertise and familiarity with the accompanying Python package. There is an opportunity for substantial improvement in data accessibility by offering users an alternative tool for conducting exploratory data analysis in a visual and intuitive manner. We aim to design and develop an open-source Python visualization tool for exploring AOT data. This tool should support researchers and users by offering a broad set of interactive features for the analysis and exploration of the data. We designed a prototype dashboard and performed user testing to validate its usability. We compared the prototype with existing data visualization and exploration tools to ensure we provided the necessary functionality. We made publicly available a user-friendly dashboard for analyzing and exploring AOT data.

2024

Detecting stationarity duration in the atmosphere

Autores
Morujao, N; Correia, CM; Garcia, P;

Publicação
ADAPTIVE OPTICS SYSTEMS IX

Abstract
Estimating turbulence parameters is essential during commissioning and optimising adaptive optics or fringe tracking systems. It also gained new relevance with free-space optical communication applications. The estimation of such parameters is done under the assumption of stationarity. Yet, the stationarity time scale of the atmospheric turbulence is unknown. The breakdown of this assumption leads to incorrect estimates and added error terms. In this paper, we illustrate stationarity detection with unit root testing and the pitfalls of its application to turbulence parameter time series.

  • 22
  • 23