Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CTM

2022

Deep images of the Galactic center with GRAVITY

Autores
Abuter, R; Aimar, N; Amorim, A; Arras, P; Baubock, M; Berger, JP; Bonnet, H; Brandner, W; Bourdarot, G; Cardoso, V; Clenet, Y; Davies, R; De Zeeuw, PT; Dexter, J; Dallilar, Y; Drescher, A; Eisenhauer, F; Ensslin, T; Schreiber, NMF; Garcia, P; Gao, F; Gendron, E; Genzel, R; Gillessen, S; Habibi, M; Haubois, X; Heissel, G; Henning, T; Hippler, S; Horrobin, M; Jimenez Rosales, A; Jochum, L; Jocou, L; Kaufer, A; Kervella, P; Lacour, S; Lapeyrere, V; Le Bouquin, JB; Lena, P; Lutz, D; Mang, F; Nowak, M; Ott, T; Paumard, T; Perraut, K; Perrin, G; Pfuhl, O; Rabien, S; Shangguan, J; Shimizu, T; Scheithauer, S; Stadler, J; Straub, O; Straubmeier, C; Sturm, E; Tacconi, LJ; Tristram, KRW; Vincent, F; Von Fellenberg, S; Waisberg, I; Widmann, F; Wieprecht, E; Wiezorrek, E; Woillez, J; Yazici, S; Young, A; Zins, G;

Publicação
ASTRONOMY & ASTROPHYSICS

Abstract
Stellar orbits at the Galactic Center provide a very clean probe of the gravitational potential of the supermassive black hole. They can be studied with unique precision, beyond the confusion limit of a single telescope, with the near-infrared interferometer GRAVITY. Imaging is essential to search the field for faint, unknown stars on short orbits which potentially could constrain the black hole spin. Furthermore, it provides the starting point for astrometric fitting to derive highly accurate stellar positions. Here, we present G(R), a new imaging tool specifically designed for Galactic Center observations with GRAVITY. The algorithm is based on a Bayesian interpretation of the imaging problem, formulated in the framework of information field theory and building upon existing works in radio-interferometric imaging. Its application to GRAVITY observations from 2021 yields the deepest images to date of the Galactic Center on scales of a few milliarcseconds. The images reveal the complicated source structure within the central 100mas around Sgr A*, where we detected the stars S29 and S55 and confirm S62 on its trajectory, slowly approaching Sgr A*. Furthermore, we were able to detect S38, S42, S60, and S63 in a series of exposures for which we offset the fiber from Sgr A*. We provide an update on the orbits of all aforementioned stars. In addition to these known sources, the images also reveal a faint star moving to the west at a high angular velocity. We cannot find any coincidence with any known source and, thus, we refer to the new star as S300. From the flux ratio with S29, we estimate its K-band magnitude as m(K)(S300)similar or equal to 19.0 - 19.3. Images obtained with CLEAN confirm the detection. To assess the sensitivity of our images, we note that fiber damping reduces the apparent magnitude of S300 and the effect increases throughout the year as the star moves away from the field center. Furthermore, we performed a series of source injection tests. Under favorable circumstances, sources well below a magnitude of 20 can be recovered, while 19.7 is considered the more universal limit for a good data set.

2022

Mass distribution in the Galactic Center based on interferometric astrometry of multiple stellar orbits

Autores
Abuter, R; Aimar, N; Amorim, A; Ball, J; Baubock, M; Berger, JP; Bonnet, H; Bourdarot, G; Brandner, W; Cardoso, V; Clenet, Y; Dallilar, Y; Davies, R; De Zeeuw, PT; Dexter, J; Drescher, A; Eisenhauer, F; Schreiber, NMF; Foschi, A; Garcia, P; Gao, F; Gendron, E; Genzel, R; Gillessen, S; Habibi, M; Haubois, X; Heissel, G; Henning, T; Hippler, S; Horrobin, M; Jochum, L; Jocou, L; Kaufer, A; Kervella, P; Lacour, S; Lapeyrere, V; Le Bouquin, JB; Lena, P; Lutz, D; Ott, T; Paumard, T; Perraut, K; Perrin, G; Pfuhl, O; Rabien, S; Shangguan, J; Shimizu, T; Scheithauer, S; Stadler, J; Stephens, AW; Straub, O; Straubmeier, C; Sturm, E; Tacconi, LJ; Tristram, KRW; Vincent, F; Von Fellenberg, S; Widmann, F; Wieprecht, E; Wiezorrek, E; Woillez, J; Yazici, S; Young, A;

Publicação
ASTRONOMY & ASTROPHYSICS

Abstract
Stars orbiting the compact radio source Sgr A* in the Galactic Center serve as precision probes of the gravitational field around the closest massive black hole. In addition to adaptive optics-assisted astrometry (with NACO/VLT) and spectroscopy (with SINFONI/VLT, NIRC2/Keck and GNIRS/Gemini) over three decades, we have obtained 30-100 mu as astrometry since 2017 with the four-telescope interferometric beam combiner GRAVITY/VLTI, capable of reaching a sensitivity of m(K)=20 when combining data from one night. We present the simultaneous detection of several stars within the diffraction limit of a single telescope, illustrating the power of interferometry in the field. The new data for the stars S2, S29, S38, and S55 yield significant accelerations between March and July 2021, as these stars pass the pericenters of their orbits between 2018 and 2023. This allows for a high-precision determination of the gravitational potential around Sgr A*. Our data are in excellent agreement with general relativity orbits around a single central point mass, M-center dot=4.30 x 10(6)M(circle dot), with a precision of about +/- 0.25%. We improve the significance of our detection of the Schwarzschild precession in the S2 orbit to 7 sigma. Assuming plausible density profiles, the extended mass component inside the S2 apocenter (approximate to 0.23 '' or 2.4 x 10(4)R(S)) must be less than or similar to 3000M(circle dot)(1 sigma), or less than or similar to 0.1% of M-center dot. Adding the enclosed mass determinations from 13 stars orbiting Sgr A* at larger radii, the innermost radius at which the excess mass beyond Sgr A* is tentatively seen is r approximate to 2.5 ''>= 10x the apocenter of S2. This is in full harmony with the stellar mass distribution (including stellar-mass black holes) obtained from the spatially resolved luminosity function.

2021

Joint traffic-aware UAV placement and predictive routing for aerial networks

Autores
Almeida, EN; Coelho, A; Ruela, J; Campos, R; Ricardo, M;

Publicação
AD HOC NETWORKS

Abstract
Aerial networks, composed of Unmanned Aerial Vehicles (UAVs) acting as Wi-Fi access points or cellular base stations, are emerging as an interesting solution to provide on-demand wireless connectivity to users, when there is no network infrastructure available, or to enhance the network capacity. This article proposes a traffic aware topology control solution for aerial networks that holistically combines the placement of UAVs with a predictive and centralized routing protocol. The synergy created by the combination of the UAV placement and routing solutions allows the aerial network to seamlessly update its topology according to the users' traffic demand, whilst minimizing the disruption caused by the movement of the UAVs. As a result, the Quality of Service (QoS) provided to the users is improved. The components of the proposed solution are described and evaluated in this article by means of simulation and an experimental testbed. The results show that the QoS provided to the users is significantly improved when compared to the corresponding baseline solutions.

2021

Reproducible MIMO operation in ns-3 using trace-based wi-fi rate adaptation

Autores
Lamela, V; Fontes, H; Ruela, J; Ricardo, M; Campos, R;

Publicação
WNS3 2021: 2021 Workshop on ns-3, Virtual Event, USA

Abstract
Today, wireless networks are operating in increasingly complex environments, impacting the evaluation and validation of new networking solutions. Simulation, although fully controllable and easily reproducible, depends on simplified physical layer and channel models, which often produce optimistic results. Experimentation is also influenced by external random phenomena and limited testbed scale and availability, resulting in hardly repeatable and reproducible results. Previously, we have proposed the Trace-based Simulation (TS) approach to address the problem. TS uses traces of radio link quality and position of nodes to accurately reproduce past experiments in ns-3. Yet, in its current version, TS is not compatible with scenarios where Multiple-In-Multiple-Out (MIMO) is used. This is especially relevant since ns-3 assumes perfectly independent MIMO radio streams. In this paper, we introduce the Trace-based Wi-Fi Station Manager Model, which is capable of reproducing the Rate Adaptation of past Wi-Fi experiments, including the number of effective radio streams used. To validate the proposed model, the network throughput was measured in different experiments performed in the w-iLab.t testbed, considering Single-In-Single-Out (SISO) and MIMO operation using IEEE 802.11a/n/ac standards. The experimental results were then compared with the network throughput achieved using the improved TS and Pure Simulation (PS) approaches, validating the new proposed model and confirming its relevance to reproduce experiments previously executed in real environments. © 2021 ACM.

2021

Wide Scanning Angle Millimetre Wave 1 x 4 Planar Antenna Array on InP at 300 GHz

Autores
Hussain, B; Salgado, HM; Pessoa, LM;

Publicação
APPLIED SCIENCES-BASEL

Abstract
Featured Application Short-range millimetre wave communications. The design of a uniformly spaced 1 x 4 linear antenna array using epitaxial layers of benzocyclobutene over an InP substrate is demonstrated. The array elements are conjugately matched with a uni-travelling carrier photodiode at the input. The phased array is optimised to counteract mutual coupling effects by introducing metal strips with isolated ground planes for each radiating element. The proposed antenna array can provide a gain of 10 dBi with a gain variation of +/- 3 dB. The array operates over a bandwidth of 10 GHz (295-305 GHz) with a wide scanning angle of 100 degrees in the broadside.

2021

Design and Fabrication of sub-THz Steerable Photonic Transmitter 1x4 Array for Short-Distance Wireless Links

Autores
Guerrero, LG; Graham, C; George, J; Renaud, C; George, G; Hussain, B; Salgado, HM; Pessoa, LM; Hinojosa, A; Fernandez, J; Porcel, MAG;

Publicação
2021 JOINT EUROPEAN CONFERENCE ON NETWORKS AND COMMUNICATIONS & 6G SUMMIT (EUCNC/6G SUMMIT)

Abstract
In this paper we present the latest results on the design, fabrication and test of stand-alone photonic devices devoted to ultra-high bandwidth wireless access networks operating near the Terahertz (THz) band. We review the sub-THz photonics-based technology devices developed as part of the TERAPOD project, comprising the monolithically integrated Silicon Nitride photonic integrated circuit for phase distribution, the 1x4 array of integrated Uni-Travelling Carrier Photo-Diodes (UTC-PDs) and the radiative design of the high-frequency four element linear patch antenna array based on Benzocyclobutene (BCB) layers. We also report the suitability to assemble all those components in a robust small-form factor hybrid package.

  • 89
  • 368