Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CTM

2022

The multi-object adaptive optics system for the Gemini Infra-Red Multi-Object Spectrograph

Autores
Chapman S.C.; Conod U.; Turri P.; Jackson K.; Lardiere O.; Sivanandam S.; Andersen D.; Correia C.; Lamb M.; Ross C.; Sivo G.; Veran J.P.;

Publicação
Proceedings of SPIE - The International Society for Optical Engineering

Abstract
The Gemini Infra-Red Multi-Object Spectrograph (GIRMOS) is a four-arm, Multi-Object Adaptive Optics (MOAO) IFU spectrograph being built for Gemini (commissioning in 2024). GIRMOS is being planned to interface with the new Gemini-North Adaptive Optics (GNAO) system, and is base lined with a requirement of 50% EE within a 0.100 spaxel at H-band. We present a design and forecast the error budget and performance of GIRMOS-MOAO working behind GNAO. The MOAO system will patrol the 20 field of regard of GNAO, utilizing closed loop GLAO or MCAO for lower order correction. GIRMOS MOAA will perform tomographic reconstruction of the turbulence using the GNAO WFS, and utilize order 16x16 actuator DMs operating in open loop to perform an additional correction from the Pseudo Open Loop (POL) slopes, achieving close to diffraction limited performance from the combined GNAO+MOAO correction. This high performance AO spectrograph will have the broadest impact in the study of the formation and evolution of galaxies, but will also have broad reach in fields such as star and planet formation within our Milky Way and supermassive black holes in nearby galaxies.

2022

Keck All Sky Precision Adaptive Optics Program Overview

Autores
Wizinowich P.; Lu J.R.; Cetre S.; Chin J.; Correia C.; Delorme J.R.; Gers L.; Lilley S.; Lyke J.; Marin E.; Ragland S.; Richards P.; Surendran A.; Wetherell E.; Chen C.F.; Chu D.; Do T.; Fassnacht C.; Freeman M.; Gautam A.; Ghez A.; Hunter L.; Jones T.; Liu M.C.; Mawet D.; Max C.; Morris M.; Phillips M.; Ruffio J.B.; Rundquist N.E.; Sabhlok S.; Terry S.; Treu T.; Wright S.;

Publicação
Proceedings of SPIE - The International Society for Optical Engineering

Abstract
We present the status and plans for the Keck All sky Precision Adaptive optics (KAPA) program. KAPA includes (1) an upgrade to the Keck I laser guide star adaptive optics (AO) facility to improve image quality and sky coverage, (2) the inclusion of AO telemetry-based point spread function estimates with all science exposures, (3) four key science programs, and (4) an educational component focused on broadening the participation of women and underrepresented groups in instrumentation. For this conference we focus on the KAPA upgrades since the 2020 SPIE proceedings1 including implementation of a laser asterism generator, wavefront sensor, real-time controller, asterism and turbulence simulators, the laser tomography system itself along with new operations software and science tools, and modifications to an existing near-infrared tip-tilt sensor to support multiple natural guide star and focus measurements. We will also report on the results of daytime and on-sky calibrations and testing.

2022

Three-sided pyramid wavefront sensor, part II: preliminary demonstration on the new comprehensive adaptive optics and coronagraph test instrument testbed

Autores
Schatz L.; Codona J.; Long J.D.; Males J.R.; Pullen W.; Lumbres J.; Van Gorkom K.; Chambouleyron V.; Close L.M.; Correia C.; Fauvarque O.; Fusco T.; Guyon O.; Hart M.; Janin-Potiron P.; Johnson R.; Jovanovic N.; Mateen M.; Sauvage J.F.; Neichel B.;

Publicação
Journal of Astronomical Telescopes, Instruments, and Systems

Abstract
The next generation of giant ground and space telescopes will have the light-collecting power to detect and characterize potentially habitable terrestrial exoplanets using high-contrast imaging for the first time. This will only be achievable if the performance of the Giant Segment Mirror Telescopes (GSMTs) extreme adaptive optics (ExAO) systems are optimized to their full potential. A key component of an ExAO system is the wavefront sensor (WFS), which measures aberrations from atmospheric turbulence. A common choice in current and next-generation instruments is the pyramid wavefront sensor (PWFS). ExAO systems require high spatial and temporal sampling of wavefronts to optimize performance and, as a result, require large detectors for the WFS. We present a closed-loop testbed demonstration of a three-sided pyramid wavefront sensor (3PWFS) as an alternative to the conventional four-sided pyramid wavefront (4PWFS) sensor for GSMT-ExAO applications on the innovative comprehensive adaptive optics and coronagraph test instrument (CACTI). The 3PWFS is less sensitive to read noise than the 4PWFS because it uses fewer detector pixels. The 3PWFS has further benefits: a high-quality three-sided pyramid optic is easier to manufacture than a four-sided pyramid. We describe the design of the two components of the CACTI system, the adaptive optics simulator and the PWFS testbed that includes both a 3PWFS and 4PWFS. We detail the error budget of the CACTI system, review its operation and calibration procedures, and discuss its current status. A preliminary experiment was performed on CACTI to study the performance of the 3PWFS to the 4PWFS in varying strengths of turbulence using both the raw intensity and slopes map signal processing methods. This experiment was repeated for a modulation radius of 1.6 and 3.25 ? / D. We found that the performance of the two wavefront sensors is comparable if modal loop gains are tuned.

2022

Key wavefront sensors features for laser-Assisted tomographic adaptive optics systems on the Extremely Large Telescope

Autores
Fusco T.; Agapito G.; Neichel B.; Oberti S.; Correia C.; Haguenauer P.; Plantet C.; Pedreros F.; Ke Z.; Costille A.; Jouve P.; Busoni L.; Esposito S.;

Publicação
Journal of Astronomical Telescopes, Instruments, and Systems

Abstract
Laser guide star (LGS) wave-front sensing (LGSWFS) is a key element of tomographic adaptive optics system. However, when considering Extremely Large Telescope (ELT) scales, the LGS spot elongation becomes so large that it challenges the standard recipes to design LGSWFS. For classical Shack-Hartmann wave-front sensor (SHWFS), which is the current baseline for all ELT LGS-Assisted instruments, a trade-off between the pupil spatial sampling [number of sub-Apertures (SAs)], the SA field-of-view (FoV) and the pixel sampling within each SA is required. For ELT scales, this trade-off is also driven by strong technical constraints, especially concerning the available detectors and in particular their number of pixels. For SHWFS, a larger field of view per SA allows mitigating the LGS spot truncation, which represents a severe loss of performance due to measurement biases. For a given number of available detectors pixels, the SA FoV is competing with the proper sampling of the LGS spots, and/or the total number of SAs. We proposed a sensitivity analysis, and we explore how these parameters impacts the final performance. In particular, we introduce the concept of super resolution, which allows one to reduce the pupil sampling per WFS and opens an opportunity to propose potential LGSWFS designs providing the best performance for ELT scales.

2022

Super-resolution wavefront reconstruction

Autores
Oberti, S; Correia, C; Fusco, T; Neichel, B; Guiraud, P;

Publicação
ASTRONOMY & ASTROPHYSICS

Abstract
Context. Cutting-edge, ground-based astronomical instruments are fed by adaptive optics (AO) systems that are aimed at providing high performance down to the visible wavelength domain on 10 m class telescopes and in the near infrared for the first generation instruments of Extremely Large Telescopes (ELTs). Both applications lead to a large ratio between the telescope diameter, D, and the coherence length or Fried parameter, r(0), that is D/r(0). As the parameter that defines the required number of degrees of freedom of the AO system, D/r(0) drives the requirement to reconstruct the incoming wavefront with ever-higher spatial resolution. In this context, super-resolution (SR) appears as a potential game changer. Indeed, SR promises to dramatically expand the range of spatial frequencies that can be reconstructed from a set of lower resolution measurements of the wavefront. Aims. As a technique that seeks to upscale the resolution of a set of measured signals, SR retrieves higher-frequency signal content by combining multiple lower resolution sampled data sets. It is well known both in the temporal and spatial domains and widely used in imaging to reduce aliasing and enhance the resolution of coarsely sampled images. This study applies the SR technique to the bidimensional wavefront reconstruction. In particular, we show how SR is intrinsically suited for tomographic multi-wavefront sensor (WFS) AO systems, revealing many of its advantages with minimal design effort. Methods. We provide a direct space and Fourier optics description of the wavefront sensing operation and we demonstrate how SR can be exploited through signal reconstruction, especially within the framework of periodic non-uniform sampling. We investigate both meta-uniform and non-uniform sampling schemes and we show that under some conditions, both sampling schemes enable a perfect reconstruction of band-limited signals. We also provide a SR bi-dimensional model for a Shack-Hartmann (SH) WFS, along with an analysis of the characteristics of the sensitivity function. We validated the SR concept with numerical simulations of representative multi-WFS SH AO systems. Finally, we explored the extension of the method to pyramid WFSs. Results. Our results show that combining several WFS samples in a SR framework grants access to a greater number of modes than the native one offered by a single WFS (despite the fixed sub-aperture size across samples). We show that the wavefront reconstruction achieved with four WFSs can be equivalent to a single WFS providing a sampling resolution that is twice greater (linear across the telescope aperture). We also show that the associated noise propagation is not degraded under SR. Finally, we show that the concept can be extended to the signal produced by single pyramid WFS, with its four re-imaged pupils serving as multiple non-redundant samples. Conclusions. We find that SR applied to wavefront sensing and reconstruction (WFR) offers a new parameter space to explore, as it decouples the size of the sub-aperture from the desired wavefront sampling resolution. By shifting away from outdated assumptions, new and more flexible, better-performing AO designs have now become possible.

2022

6U CubeSat deployable telescope for Earth Observation and astronomical optical imaging

Autores
Schwartz, N; Brzozowski, W; Ali, Z; Milanova, M; Morris, K; Bond, C; Keogh, J; Harvey, D; Bissell, L; Sauvage, JF; Dumont, M; Correia, C; Rees, P; Bruce, H;

Publicação
SPACE TELESCOPES AND INSTRUMENTATION 2022: OPTICAL, INFRARED, AND MILLIMETER WAVE

Abstract
Available volumes of nanosats such as CubeSats impose physical limits to the telescope diameter, limiting achievable spatial resolution and photometric capability. For example, a 12U CubeSat typically only has sufficient volume to host a 20 cm diameter monolithic telescope. In this paper, we present recent advances in deployable optics to host a 30 cm+ diameter telescope in a 6U CubeSat, with a volume of 4U dedicated to the payload and 2U to the satellite bus. To reach this high level of compactness, we fold the primary and secondary mirrors for launch, which are then unfolded and aligned in space. Diffraction-limited imaging quality in the visible part of the spectrum is achieved by controlling each mirror segment in piston, tip, and tilt. In this paper, we first describe overall satellite concept, we then report on the opto-mechanical design of the payload to deploy and adjust the mirrors. Finally, we discuss the automatic phasing of the primary to control the final optical quality of the telescope.

  • 84
  • 368