Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CTM

2022

3D Breast Volume Estimation

Autores
Gouveia, PF; Oliveira, HP; Monteiro, JP; Teixeira, JF; Silva, NL; Pinto, D; Mavioso, C; Anacleto, J; Martinho, M; Duarte, I; Cardoso, JS; Cardoso, F; Cardoso, MJ;

Publicação
EUROPEAN SURGICAL RESEARCH

Abstract
Introduction: Breast volume estimation is considered crucial for breast cancer surgery planning. A single, easy, and reproducible method to estimate breast volume is not available. This study aims to evaluate, in patients proposed for mastectomy, the accuracy of the calculation of breast volume from a low-cost 3D surface scan (Microsoft Kinect) compared to the breast MRI and water displacement technique. Material and Methods: Patients with a Tis/T1-T3 breast cancer proposed for mastectomy between July 2015 and March 2017 were assessed for inclusion in the study. Breast volume calculations were performed using a 3D surface scan and the breast MRI and water displacement technique. Agreement between volumes obtained with both methods was assessed with the Spearman and Pearson correlation coefficients. Results: Eighteen patients with invasive breast cancer were included in the study and submitted to mastectomy. The level of agreement of the 3D breast volume compared to surgical specimens and breast MRI volumes was evaluated. For mastectomy specimen volume, an average (standard deviation) of 0.823 (0.027) and 0.875 (0.026) was obtained for the Pearson and Spearman correlations, respectively. With respect to MRI annotation, we obtained 0.828 (0.038) and 0.715 (0.018). Discussion: Although values obtained by both methodologies still differ, the strong linear correlation coefficient suggests that 3D breast volume measurement using a low-cost surface scan device is feasible and can approximate both the MRI breast volume and mastectomy specimen with sufficient accuracy. Conclusion: 3D breast volume measurement using a depth-sensor low-cost surface scan device is feasible and can parallel MRI breast and mastectomy specimen volumes with enough accuracy. Differences between methods need further development to reach clinical applicability. A possible approach could be the fusion of breast MRI and the 3D surface scan to harmonize anatomic limits and improve volume delimitation.

2022

Quasi-Unimodal Distributions for Ordinal Classification

Autores
Albuquerque, T; Cruz, R; Cardoso, JS;

Publicação
MATHEMATICS

Abstract
Ordinal classification tasks are present in a large number of different domains. However, common losses for deep neural networks, such as cross-entropy, do not properly weight the relative ordering between classes. For that reason, many losses have been proposed in the literature, which model the output probabilities as following a unimodal distribution. This manuscript reviews many of these losses on three different datasets and suggests a potential improvement that focuses the unimodal constraint on the neighborhood around the true class, allowing for a more flexible distribution, aptly called quasi-unimodal loss. For this purpose, two constraints are proposed: A first constraint concerns the relative order of the top-three probabilities, and a second constraint ensures that the remaining output probabilities are not higher than the top three. Therefore, gradient descent focuses on improving the decision boundary around the true class in detriment to the more distant classes. The proposed loss is found to be competitive in several cases.

2022

Privacy-Preserving Case-Based Explanations: Enabling Visual Interpretability by Protecting Privacy

Autores
Montenegro, H; Silva, W; Gaudio, A; Fredrikson, M; Smailagic, A; Cardoso, JS;

Publicação
IEEE ACCESS

Abstract
Deep Learning achieves state-of-the-art results in many domains, yet its black-box nature limits its application to real-world contexts. An intuitive way to improve the interpretability of Deep Learning models is by explaining their decisions with similar cases. However, case-based explanations cannot be used in contexts where the data exposes personal identity, as they may compromise the privacy of individuals. In this work, we identify the main limitations and challenges in the anonymization of case-based explanations of image data through a survey on case-based interpretability and image anonymization methods. We empirically analyze the anonymization methods in regards to their capacity to remove personally identifiable information while preserving relevant semantic properties of the data. Through this analysis, we conclude that most privacy-preserving methods are not sufficiently good to be applied to case-based explanations. To promote research on this topic, we formalize the privacy protection of visual case-based explanations as a multi-objective problem to preserve privacy, intelligibility, and relevant explanatory evidence regarding a predictive task. We empirically verify the potential of interpretability saliency maps as qualitative evaluation tools for anonymization. Finally, we identify and propose new lines of research to guide future work in the generation of privacy-preserving case-based explanations.

2022

From Captions to Explanations: A Multimodal Transformer-based Architecture for Natural Language Explanation Generation

Autores
Rio-Torto, I; Cardoso, JS; Teixeira, LF;

Publicação
PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2022)

Abstract
The growing importance of the Explainable Artificial Intelligence (XAI) field has led to the proposal of several methods for producing visual heatmaps of the classification decisions of deep learning models. However, visual explanations are not sufficient because different end-users have different backgrounds and preferences. Natural language explanations (NLEs) are inherently understandable by humans and, thus, can complement visual explanations. Therefore, we introduce a novel architecture based on multimodal Transformers to enable the generation of NLEs for image classification tasks. Contrary to the current literature, which models NLE generation as a supervised image captioning problem, we propose to learn to generate these textual explanations without their direct supervision, by starting from image captions and evolving to classification-relevant text. Preliminary experiments on a novel dataset where there is a clear demarcation between captions and NLEs show the potential of the approach and shed light on how it can be improved.

2022

iMIL4PATH: A Semi-Supervised Interpretable Approach for Colorectal Whole-Slide Images

Autores
Neto, PC; Oliveira, SP; Montezuma, D; Fraga, J; Monteiro, A; Ribeiro, L; Goncalves, S; Pinto, IM; Cardoso, JS;

Publicação
CANCERS

Abstract
Simple Summary Nowadays, colorectal cancer is the third most incident cancer worldwide and, although it can be detected by imaging techniques, diagnosis is always based on biopsy samples. This assessment includes neoplasia grading, a subjective yet important task for pathologists. With the growing availability of digital slides, the development of robust and high-performance computer vision algorithms can help to tackle such a task. In this work, we propose an approach to automatically detect and grade lesions in colorectal biopsies with high sensitivity. The presented model attempts to support slide decision reasoning in terms of the spatial distribution of lesions, focusing the pathologist's attention on key areas. Thus, it can be integrated into clinical practice as a second opinion or as a flag for details that may have been missed at first glance. Colorectal cancer (CRC) diagnosis is based on samples obtained from biopsies, assessed in pathology laboratories. Due to population growth and ageing, as well as better screening programs, the CRC incidence rate has been increasing, leading to a higher workload for pathologists. In this sense, the application of AI for automatic CRC diagnosis, particularly on whole-slide images (WSI), is of utmost relevance, in order to assist professionals in case triage and case review. In this work, we propose an interpretable semi-supervised approach to detect lesions in colorectal biopsies with high sensitivity, based on multiple-instance learning and feature aggregation methods. The model was developed on an extended version of the recent, publicly available CRC dataset (the CRC+ dataset with 4433 WSI), using 3424 slides for training and 1009 slides for evaluation. The proposed method attained 90.19% classification ACC, 98.8% sensitivity, 85.7% specificity, and a quadratic weighted kappa of 0.888 at slide-based evaluation. Its generalisation capabilities are also studied on two publicly available external datasets.

2022

Spiking Neural Networks: A Survey

Autores
Nunes, JD; Carvalho, M; Carneiro, D; Cardoso, JS;

Publicação
IEEE ACCESS

Abstract
The field of Deep Learning (DL) has seen a remarkable series of developments with increasingly accurate and robust algorithms. However, the increase in performance has been accompanied by an increase in the parameters, complexity, and training and inference time of the models, which means that we are rapidly reaching a point where DL may no longer be feasible. On the other hand, some specific applications need to be carefully considered when developing DL models due to hardware limitations or power requirements. In this context, there is a growing interest in efficient DL algorithms, with Spiking Neural Networks (SNNs) being one of the most promising paradigms. Due to the inherent asynchrony and sparseness of spike trains, these types of networks have the potential to reduce power consumption while maintaining relatively good performance. This is attractive for efficient DL and, if successful, could replace traditional Artificial Neural Networks (ANNs) in many applications. However, despite significant progress, the performance of SNNs on benchmark datasets is often lower than that of traditional ANNs. Moreover, due to the non-differentiable nature of their activation functions, it is difficult to train SNNs with direct backpropagation, so appropriate training strategies must be found. Nevertheless, significant efforts have been made to develop competitive models. This survey covers the main ideas behind SNNs and reviews recent trends in learning rules and network architectures, with a particular focus on biologically inspired strategies. It also provides some practical considerations of state-of-the-art SNNs and discusses relevant research opportunities.

  • 61
  • 346