2024
Autores
Vérinaud, C; Correia, C;
Publicação
Astronomy and Astrophysics
Abstract
Context. The deployment of meter-scale (hitherto pre-focal) adaptive deformable mirrors finds some prominent examples in the leading ground-based visible to near-infrared facilities (e.g. the Very Large Telescope (VLT), the Large Binocular Telescope (LBT), or the Magellan Telescope) and is being adopted by several others (e.g. the Multiple Mirror Telescope (MMT) or Subaru). Furthermore, two out of the three giant segmented-mirror telescopes now under design will feature them. In all these cases, the proprietary technology is based on voice-coils and is limited in force, stroke, and velocity. Aims. Because of the nature of their purpose, that is, adaptive wave-front correction, any kind of optimality relies on the control of a subset of principal wave-front components or eigenmodes, for short, a basis of functions in a mathematical sense. Here we provide algorithmic procedures for generating such eigenbases, also called Karhunen–Loève (KL) modes, that integrate force limitations in their definitions whilst maintaining standard orthonormality, statistical independence, and deformable mirror span. Methods. The double-diagonalisation method was revisited to build KL modes ranked by the force applied on the actuators. Results. We analysed this new KL basis for von Kármán turbulence statistics and present the fitting error and the distribution of positions and forces. We further illustrate their use in the case of the quaternary mirror control for the European Extremely Large Telescope, and we include the outer actuator minioning and force policy constraints. © The Authors 2024.
2024
Autores
Oliveira, LR; Pinheiro, MR; Tuchina, DK; Timoshina, PA; Carvalho, MI; Oliveira, LM;
Publicação
ADVANCED DRUG DELIVERY REVIEWS
Abstract
The evaluation of the diffusion properties of different molecules in tissues is a subject of great interest in various fields, such as dermatology/cosmetology, clinical medicine, implantology and food preservation. In this review, a discussion of recent studies that used kinetic spectroscopy measurements to evaluate such diffusion properties in various tissues is made. By immersing ex vivo tissues in agents or by topical application of those agents in vivo, their diffusion properties can be evaluated by kinetic collimated transmittance or diffuse reflectance spectroscopy. Using this method, recent studies were able to discriminate the diffusion properties of agents between healthy and diseased tissues, especially in the cases of cancer and diabetes mellitus. In the case of cancer, it was also possible to evaluate an increase of 5% in the mobile water content from the healthy to the cancerous colorectal and kidney tissues. Considering the application of some agents to living organisms or food products to protect them from deterioration during low temperature preservation (cryopreservation), and knowing that such agent inclusion may be reversed, some studies in these fields are also discussed. Considering the broadband application of the optical spectroscopy evaluation of the diffusion properties of agents in tissues and the physiological diagnostic data that such method can acquire, further studies concerning the optimization of fruit sweetness or evaluation of poison diffusion in tissues or antidote application for treatment optimization purposes are indicated as future perspectives.
2024
Autores
Kupriyanov, V; Pinheiro, MR; Carvalho, SD; Carneiro, IC; Henrique, RM; Tuchin, VV; Oliveira, LM; Amouroux, M; Kistenev, Y; Blondel, W;
Publicação
TISSUE OPTICS AND PHOTONICS III
Abstract
Colorectal cancer is the second most common cancer and the second with the highest associated deaths in the world. Methods used in clinical practice for colon cancer diagnosis are fairly effective but quite unpleasant and not always applicable in situations where the patient has symptoms of colonic obstruction. This problem can be solved by the use of optical methods that can be applied less invasively. This study presents the results of classification of cancerous and healthy colon tissue absorption coefficient spectra. The absorption coefficient was measured using direct calculations from the total reflectance and total transmittance spectra obtained ex vivo. Classification was performed using support vector machine, multilayer perceptron and linear discriminant analysis.
2024
Autores
Pinheiro, MR; Tuchin, VV; Oliveira, LM;
Publicação
JOURNAL OF BIOPHOTONICS
Abstract
The broadband absorption coefficient spectrum of the rabbit lung presents some particular characteristics that allow the identification of the chromophores in this tissue. By performing a weighted combination of the absorption spectra of water, hemoglobin, DNA, proteins and the pigments melanin and lipofuscin, it was possible to obtain a good match to the experimental absorption spectrum of the lung. Such reconstruction provided reasonable information about the contents of the tissue components in the lung tissue, and allowed to identify a similar accumulation of melanin and lipofuscin. The broadband absorption coefficient spectrum of the rabbit lung was reconstructed from the absorption spectra of tissue components. The similar accumulation of melanin and lipofuscin was retrieved from the broadband baseline in the absorption coefficient spectrum, and the calculation of the absorption fold ratios for proteins, DNA and hemoglobin provided good results. The method used is innovative and can be improved to allow the quantification of tissue components concentrations directly. image
2024
Autores
Kruczkowski, M; Drabik-Kruczkowska, A; Wesolowski, R; Kloska, A; Pinheiro, MR; Fernandes, L; Galan, SG;
Publicação
Interdisciplinary Cancer Research
Abstract
2024
Autores
Coelho, BFO; Nunes, SLP; de França, CA; Costa, DdS; do Carmo, RF; Prates, RM; Filho, EFS; Ramos, RP;
Publicação
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.