2015
Autores
Correia, CM; Jackson, K; Veran, JP; Andersen, D; Lardiere, O; Bradley, C;
Publicação
APPLIED OPTICS
Abstract
Multi-object astronomical adaptive optics (MOAO) is now a mature wide-field observation mode to enlarge the adaptive-optics-corrected field in a few specific locations over tens of arcminutes. The work-scope provided by open-loop tomography and pupil conjugation is amenable to a spatio-angular linear-quadratic-Gaussian (SA-LQG) formulation aiming to provide enhanced correction across the field with improved performance over static reconstruction methods and less stringent computational complexity scaling laws. Starting from our previous work [J. Opt. Soc. Am. A 31, 101 (2014)], we use stochastic time-progression models coupled to approximate sparse measurement operators to outline a suitable SA-LQG formulation capable of delivering near optimal correction. Under the spatio-angular framework the wavefronts are never explicitly estimated in the volume, providing considerable computational savings on 10-m-class telescopes and beyond. We find that for Raven, a 10-m-class MOAO system with two science channels, the SA-LQG improves the limiting magnitude by two stellar magnitudes when both the Strehl ratio and the ensquared energy are used as figures of merit. The sky coverage is therefore improved by a factor of similar to 5. (C) 2015 Optical Society of America
2015
Autores
Pereira, N; Tennina, S; Loureiro, J; Severino, R; Saraiva, B; Santos, M; Pacheco, F; Tovar, E;
Publicação
INTERNATIONAL JOURNAL OF SENSOR NETWORKS
Abstract
Data centres are large energy consumers. A large portion of this power consumption is due to the control of physical parameters of the data centre (such as temperature and humidity). However, these physical parameters are tightly coupled with computations, and even more so in upcoming data centres, where the location of workloads can vary substantially due, for example, to workloads being moved in the cloud infrastructure hosted in the data centre. Therefore, managing the physical and compute infrastructure of a large data centre is an embodiment of a cyber-physical system (CPS). In this paper, we describe a data collection and distribution architecture that enables gathering physical parameters of a large data centre at a very high temporal and spatial resolution of the sensor measurements. We detail this architecture and define the structure of the underlying messaging system that is used to collect and distribute the data.
2015
Autores
Abdelzaher, T; Pereira, N; Tovar, E;
Publicação
Lecture Notes in Computer Science
Abstract
2015
Autores
Abdelzaher, TF; Pereira, N; Tovar, E;
Publicação
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Abstract
2015
Autores
Serna, MA; Casado, R; Bermudez, A; Pereira, N; Tennina, S;
Publicação
INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS
Abstract
Disaster management is one of the most relevant application fields of wireless sensor networks. In this application, the role of the sensor network usually consists of obtaining a representation or a model of a physical phenomenon spreading through the affected area. In this work we focus on forest firefighting operations, proposing three fully distributed ways for approximating the actual shape of the fire. In the simplest approach, a circular burnt area is assumed around each node that has detected the fire and the union of these circles gives the overall fire's shape. However, as this approach makes an intensive use of the wireless sensor network resources, we have proposed to incorporate two in-network aggregation techniques, which do not require considering the complete set of fire detections. The first technique models the fire by means of a complex shape composed of multiple convex hulls representing different burning areas, while the second technique uses a set of arbitrary polygons. Performance evaluation of realistic fire models on computer simulations reveals that the method based on arbitrary polygons obtains an improvement of 20% in terms of accuracy of the fire shape approximation, reducing the overhead in-network resources to 10% in the best case.
2015
Autores
Abdelzaher T.; Pereira N.;
Publicação
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.