2024
Autores
Moita, S; Moreira, RS; Gouveia, F; Torres, JM; Gerreiro, MS; Ferreira, D; Sucena, S; Dinis, MA;
Publicação
2024 INTERNATIONAL CONFERENCE ON SMART APPLICATIONS, COMMUNICATIONS AND NETWORKING, SMARTNETS-2024
Abstract
There is a widespread social awareness for the need of adequate accessibility (e.g. missing ramps at crosswalks, obstacles and potholes at sidewalks) in the planning of safe and inclusive city spaces for all citizens. Therefore, municipal authorities responsible for planning urban spaces could benefit from the use of tools for automating the identification of areas in need of accessibility improving interventions. This paper builds on the assumption that it is possible to use Machine Learning (ML) pipelines for automating the detection of accessibility constraints in public spaces, particularly on sidewalks. Those pipelines rely mostly on Deep Learning algorithms to automate the detection of common accessibility issues. Current literature approaches rely on the use of traditional classifiers focused on images' datasets containing single-labelled accessibility classes. We propose an alternative approach using object-detection models that provide a more generic and human-like mode, as it will look into wider city pictures to spot multiple accessibility problems at once. Hence, we evaluate and compare the results of a more generic YOLO model against previous results obtained by more traditional ResNet classification models. The ResNet models used in Project Sidewalk were trained and tested on per-city basis datasets of images crowd-labeled with accessibility attributes. By combining the use of the Project Sidewalk and Google Street View (GSV) service APIs, we re-assembled a world-cities-mix dataset used to train, validate and test the YOLO object-detection model, which exhibited precision and recall values above 84%. Our team of architects and civil engineers also collected a labeled image dataset from two central areas of Porto city, which was used to jointly train and test the YOLO model. The results show that training (even with a small dataset of Porto) the cities-mix-trained YOLO model, provides comparable precision values against the ones obtained by ResNet per-city classifiers. Furthermore, the YOLO approach offers a more human-like generic and efficient pipeline, thus justifying its future exploitation on automating cataloging accessibility mappings in cities.
2024
Autores
Oliveira, JM; Ramos, P;
Publicação
MATHEMATICS
Abstract
This study investigates the effectiveness of Transformer-based models for retail demand forecasting. We evaluated vanilla Transformer, Informer, Autoformer, PatchTST, and temporal fusion Transformer (TFT) against traditional baselines like AutoARIMA and AutoETS. Model performance was assessed using mean absolute scaled error (MASE) and weighted quantile loss (WQL). The M5 competition dataset, comprising 30,490 time series from 10 stores, served as the evaluation benchmark. The results demonstrate that Transformer-based models significantly outperform traditional baselines, with Transformer, Informer, and TFT leading the performance metrics. These models achieved MASE improvements of 26% to 29% and WQL reductions of up to 34% compared to the seasonal Na & iuml;ve method, particularly excelling in short-term forecasts. While Autoformer and PatchTST also surpassed traditional methods, their performance was slightly lower, indicating the potential for further tuning. Additionally, this study highlights a trade-off between model complexity and computational efficiency, with Transformer models, though computationally intensive, offering superior forecasting accuracy compared to the significantly slower traditional models like AutoARIMA. These findings underscore the potential of Transformer-based approaches for enhancing retail demand forecasting, provided the computational demands are managed effectively.
2024
Autores
Teixeira, M; Oliveira, JM; Ramos, P;
Publicação
MACHINE LEARNING AND KNOWLEDGE EXTRACTION
Abstract
Retailers depend on accurate sales forecasts to effectively plan operations and manage supply chains. These forecasts are needed across various levels of aggregation, making hierarchical forecasting methods essential for the retail industry. As competition intensifies, the use of promotions has become a widespread strategy, significantly impacting consumer purchasing behavior. This study seeks to improve forecast accuracy by incorporating promotional data into hierarchical forecasting models. Using a sales dataset from a major Portuguese retailer, base forecasts are generated for different hierarchical levels using ARIMA models and Multi-Layer Perceptron (MLP) neural networks. Reconciliation methods including bottom-up, top-down, and optimal reconciliation with OLS and WLS (struct) estimators are employed. The results show that MLPs outperform ARIMA models for forecast horizons longer than one day. While the addition of regressors enhances ARIMA's accuracy, it does not yield similar improvements for MLP. MLPs present a compelling balance of simplicity and efficiency, outperforming ARIMA in flexibility while offering faster training times and lower computational demands compared to more complex deep learning models, making them highly suitable for practical retail forecasting applications.
2024
Autores
Alves, VM; Cardoso, JD; Gama, J;
Publicação
NUCLEAR MEDICINE AND MOLECULAR IMAGING
Abstract
Purpose 2-[F-18]FDG PET/CT plays an important role in the management of pulmonary nodules. Convolutional neural networks (CNNs) automatically learn features from images and have the potential to improve the discrimination between malignant and benign pulmonary nodules. The purpose of this study was to develop and validate a CNN model for classification of pulmonary nodules from 2-[F-18]FDG PET images.Methods One hundred thirteen participants were retrospectively selected. One nodule per participant. The 2-[F-18]FDG PET images were preprocessed and annotated with the reference standard. The deep learning experiment entailed random data splitting in five sets. A test set was held out for evaluation of the final model. Four-fold cross-validation was performed from the remaining sets for training and evaluating a set of candidate models and for selecting the final model. Models of three types of 3D CNNs architectures were trained from random weight initialization (Stacked 3D CNN, VGG-like and Inception-v2-like models) both in original and augmented datasets. Transfer learning, from ImageNet with ResNet-50, was also used.Results The final model (Stacked 3D CNN model) obtained an area under the ROC curve of 0.8385 (95% CI: 0.6455-1.0000) in the test set. The model had a sensibility of 80.00%, a specificity of 69.23% and an accuracy of 73.91%, in the test set, for an optimised decision threshold that assigns a higher cost to false negatives.Conclusion A 3D CNN model was effective at distinguishing benign from malignant pulmonary nodules in 2-[F-18]FDG PET images.
2024
Autores
Cruz, RPM; Shihavuddin, ASM; Maruf, MH; Cardoso, JS;
Publicação
PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2023, PT I
Abstract
After the learning process, certain types of images may not be modeled correctly because they were not well represented in the training set. These failures can then be compensated for by collecting more images from the real-world and incorporating them into the learning process - an expensive process known as active learning. The proposed twist, called active supervision, uses the model itself to change the existing images in the direction where the boundary is less defined and requests feedback from the user on how the new image should be labeled. Experiments in the context of class imbalance show the technique is able to increase model performance in rare classes. Active human supervision helps provide crucial information to the model during training that the training set lacks.
2024
Autores
Nogueira, C; Fernandes, L; Fernandes, JND; Cardoso, JS;
Publicação
SENSORS
Abstract
Deep learning has rapidly increased in popularity, leading to the development of perception solutions for autonomous driving. The latter field leverages techniques developed for computer vision in other domains for accomplishing perception tasks such as object detection. However, the black-box nature of deep neural models and the complexity of the autonomous driving context motivates the study of explainability in these models that perform perception tasks. Moreover, this work explores explainable AI techniques for the object detection task in the context of autonomous driving. An extensive and detailed comparison is carried out between gradient-based and perturbation-based methods (e.g., D-RISE). Moreover, several experimental setups are used with different backbone architectures and different datasets to observe the influence of these aspects in the explanations. All the techniques explored consist of saliency methods, making their interpretation and evaluation primarily visual. Nevertheless, numerical assessment methods are also used. Overall, D-RISE and guided backpropagation obtain more localized explanations. However, D-RISE highlights more meaningful regions, providing more human-understandable explanations. To the best of our knowledge, this is the first approach to obtaining explanations focusing on the regression of the bounding box coordinates.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.