2025
Autores
Guerra, AR; Oliveira, LR; Rodrigues, GO; Pinheiro, MR; Carvalho, MI; Tuchin, VV; Oliveira, LM;
Publicação
JOURNAL OF BIOPHOTONICS
Abstract
Measuring the density of tartrazine (TZ) powder allowed to develop a protocol for fast preparation of aqueous solutions with a desired concentration. The stability time of these solutions decreases exponentially with the increase of TZ concentration: solutions with TZ concentrations below 25% remain stable for more than 24 h, while the solution with 60% TZ remains stable only for 35 min. To validate the developed protocol, muscle samples were immersed in the 40% TZ solution and, as expected, the tissue transparency increased smoothly and exponentially during the whole treatment of 30 min. The diffusion time of TZ in ex vivo skeletal muscle was quantitatively determined with high accuracy as tau TZ = 5.39 +/- 0.49 min for sample thickness of 0.5 mm. By measuring the refractive index of TZ solutions during preparation, it will be easier to prepare such solutions in a fast manner for future research on tissue optical clearing.
2025
Autores
Facao, M; Malheiro, D; Carvalho, MI;
Publicação
PHYSICAL REVIEW A
Abstract
We studied the characteristics, regions of existence, and stability of different types of solitons for a distributed model of a mode-locked laser whose dispersion is purely quartic and normal. Among the different types of solitons, we identified three main branches that are named according to their different amplitude: low, medium, and high amplitude solitons. It was found that the first solitons are always unstable while the latter two exist and are stable in relatively large regions of the parameter space. Moreover, the stability regions of medium and high amplitude solitons overlap over a certain range of parameters, manifesting effects of bistability. The energy of high amplitude solitons increases quadratically with their width, whereas the energy of medium amplitude solitons may decrease or increase with the width depending on the parameter region. Furthermore, we have investigated the long term evolution of the continuous-wave solutions under modulational instability, showing that medium amplitude solitons can arise in this scenario. Additionally, we assessed the effects of second- and third-order dispersion on medium and high amplitude solitons and found that both remain stable in the presence of these terms.
2025
Autores
Carvalho, MI; Facao, M; Descalzi, O;
Publicação
CHAOS
Abstract
Modulation instability (MI) of the continuous wave (cw) has been associated with the onset of stable solitons in conservative and dissipative systems. The cubic complex Ginzburg-Landau equation (CGLE) is a prototype of a damped, driven, nonlinear, and dispersive system. The inclusion of nonlinear gradients is essential to stabilize pulses whether stationary or oscillatory. The soliton solutions of this model have been reasonably studied; however, its cw solution characteristics and stability have not been reported yet. Here, we obtain the cw solutions of the cubic CGLE with nonlinear gradient terms and study its short- and long-term evolution under the effect of small perturbations. We have found that, for each admissible amplitude, there are two branches of cw solutions, and all of them are unstable. Then, through direct integration of the evolution equation, we study the evolution of those cw solutions, observing the emergence of plain and oscillatory solitons. Depending on whether the cw and/or its perturbation are sinusoidal, we can obtain a train of a finite number of pulses or bound states.
2025
Autores
Ferreira, IA; Palazzo, G; Pinto, A; Pinto, P; Sousa, P; Godina, R; Carvalho, H;
Publicação
OPERATIONS MANAGEMENT RESEARCH
Abstract
Adopting innovative technologies such as blockchain and additive manufacturing can help organisations promote the development of additive symbiotic networks, thus pursuing higher sustainable goals and implementing circular economy strategies. These symbiotic networks correspond to industrial symbiosis networks in which wastes and by-products from other industries are incorporated into additive manufacturing processes. The adoption of blockchain technology in such a context is still in a nascent stage. Using the case study method, this research demonstrates the adoption of blockchain technology in an additive symbiotic network of a real-life context. The requirements to use a blockchain network are identified, and an architecture based on smart contracts is proposed as an enabler of the additive symbiotic network under study. The proposed solution uses the Hyperledger Fabric Attribute-Based Access Control as the distributed ledger technology. Even though this solution is still in the proof-of-concept stage, the results show that adopting it would allow the elimination of intermediary entities, keep available tracking records of the resources exchanged, and improve trust among the symbiotic stakeholders (that do not have any trust or cooperation mechanisms established before the symbiotic relationship). This study highlights that the complexity associated with introducing a novel technology and the technology's immaturity compared to other data storage technologies are some of the main challenges related to using blockchain technology in additive symbiotic networks.
2025
Autores
Malta, S; Pinto, P; Fernández-Veiga, M;
Publicação
JOURNAL OF NETWORK AND COMPUTER APPLICATIONS
Abstract
The advent of 5th Generation (5G) networks has introduced the strategy of network slicing as a paradigm shift, enabling the provision of services with distinct Quality of Service (QoS) requirements. The 5th Generation New Radio (5G NR) standard complies with the use cases Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low Latency Communications (URLLC), and Massive Machine Type Communications (mMTC), which demand a dynamic adaptation of network slicing to meet the diverse traffic needs. This dynamic adaptation presents both a critical challenge and a significant opportunity to improve 5G network efficiency. This paper proposes a Deep Reinforcement Learning (DRL) agent that performs dynamic resource allocation in 5G wireless network slicing according to traffic requirements of the 5G use cases within two scenarios: eMBB with URLLC and eMBB with mMTC. The DRL agent evaluates the performance of different decoding schemes such as Orthogonal Multiple Access (OMA), Non-Orthogonal Multiple Access (NOMA), and Rate Splitting Multiple Access (RSMA) and applies the best decoding scheme in these scenarios under different network conditions. The DRL agent has been tested to maximize the sum rate in scenario eMBB with URLLC and to maximize the number of successfully decoded devices in scenario eMBB with mMTC, both with different combinations of number of devices, power gains and number of allocated frequencies. The results show that the DRL agent dynamically chooses the best decoding scheme and presents an efficiency in maximizing the sum rate and the decoded devices between 84% and 100% for both scenarios evaluated.
2025
Autores
Bocus, MJ; Hakkinen, J; Fontes, H; Drzewiecki, M; Qiu, S; Eder, K; Piechocki, RJ;
Publicação
CoRR
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.