2025
Autores
Braga, F; Bernardes, G; Dannenberg, RB; Correia, N;
Publicação
Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence
Abstract
2025
Autores
Forero Rodriguez, J; Bernardes, G;
Publicação
Proceedings of the 12th International Conference on Digital Libraries for Musicology
Abstract
2025
Autores
Khatri, N; Bernardes, G;
Publicação
Proceedings of the 12th International Conference on Digital Libraries for Musicology
Abstract
2025
Autores
Carvalho, N; Sousa, J; Portovedo, H; Bernardes, G;
Publicação
INTERNATIONAL JOURNAL OF PERFORMANCE ARTS AND DIGITAL MEDIA
Abstract
This article investigates sampling strategies in latent space navigation to enhance co-creative music systems, focusing on timbre latent spaces. Adopting Villa-Rojo's 'Lamento' for tenor saxophone and tape as a case study, we conducted two experiments. The first assessed traditional corpus-based concatenative synthesis sampling within the RAVE model's latent space, finding that sampling strategies gradually deviate from a given target sonority while still relating to the original morphology. The second experiment aims at defining sampling strategies for creating variations of an input signal, namely parallel, contrary, and oblique motions. The findings expose the need to explore individual model layers and the geometric transformation nature of the contrary and oblique motions that tend to dilate the original shape. The findings highlight the potential of motion-aware sampling for more contextually aware and expressive control of music structures via CBCS.
2025
Autores
Silva, P; Dinis, R; Coelho, A; Ricardo, M;
Publicação
Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST
Abstract
The rapid growth of data traffic and evolving service demands are driving a shift from traditional network architectures to advanced solutions. While 5G networks provide reduced latency and higher availability, they still face limitations due to reliance on integrated hardware, leading to configuration and interoperability challenges. The emerging Open Radio Access Network (O-RAN) paradigm addresses these issues by enabling remote configuration and management of virtualized components through open interfaces, promoting cost-effective, multi-vendor interoperability. Network slicing, a key 5G enabler, allows for tailored network configurations to meet heterogeneous performance requirements. The main contribution of this paper is a private Standalone 5G network based on O-RAN, featuring a dynamic Data Radio Bearer Management xApp (xDRBM) for real-time metric collection and traffic prioritization. xDRBM optimizes resource usage and ensures performance guarantees for specific applications. Validation was conducted in an emulated environment representative of real-world scenarios. © ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2025.
2025
Autores
Zugno, T; Ciochina, C; Sambhwani, S; Svedman, P; Pessoa, LM; Chen, B; Lehne, PH; Boban, M; Kürner, T;
Publicação
IEEE WIRELESS COMMUNICATIONS
Abstract
Thanks to the vast amount of available resources and unique propagation properties, terahertz (THz) frequency bands are viewed as a key enabler for achieving ultrahigh communication performance and precise sensing capabilities in future wireless systems. Recently, the European Telecommunications Standards Institute (ETSI) initiated an Industry Specification Group (ISG) on THz which aims at establishing the technical foundation for subsequent standardization of this technology, which is pivotal for its successful integration into future networks. Starting from the work recently finalized within this group, this article provides an industrial perspective on potential use cases and frequency bands of interest for THz communication systems. We first identify promising frequency bands in the 100 GHz-1 THz range, offering over 500 GHz of available spectrum that can be exploited to unlock the full potential of THz communications. Then, we present key use cases and application areas for THz communications, emphasizing the role of this technology and its advantages over other frequency bands. We discuss their target requirements and show that some applications demand multi-Tb/s data rates, latency below 0.5 ms, and sensing accuracy down to 0.5 cm. Additionally, we identify the main deployment scenarios and outline other enabling technologies crucial for overcoming the challenges faced by THz systems. Finally, we summarize past and ongoing standardization efforts focusing on THz communications, while also providing an outlook toward the inclusion of this technology as an integral part of the future sixth generation (6G) and beyond communication networks.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.