Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CTM

2024

Learning Ordinality in Semantic Segmentation

Autores
Cristino, R; Cruz, RPM; Cardoso, JS;

Publicação
CoRR

Abstract

2024

Deep Learning-based Prediction of Breast Cancer Tumor and Immune Phenotypes from Histopathology

Autores
Gonçalves, T; Arias, DP; Willett, J; Hoebel, KV; Cleveland, MC; Ahmed, SR; Gerstner, ER; Cramer, JK; Cardoso, JS; Bridge, CP; Kim, AE;

Publicação
CoRR

Abstract

2024

Interpretable AI for medical image analysis: methods, evaluation, and clinical considerations

Autores
Gonçalves, T; Hedström, A; Pahud de Mortanges, A; Li, X; Müller, H; Cardoso, S; Reyes, M;

Publicação
Trustworthy Ai in Medical Imaging

Abstract
In the healthcare context, artificial intelligence (AI) has the potential to power decision support systems and help health professionals in their clinical decisions. However, given its complexity, AI is usually seen as a black box that receives data and outputs a prediction. This behavior may jeopardize the adoption of this technology by the healthcare community, which values the existence of explanations to justify a clinical decision. Besides, the developers must have a strategy to assess and audit these systems to ensure their reproducibility and quality in production. The field of interpretable artificial intelligence emerged to study how these algorithms work and clarify their behavior. This chapter reviews several interpretability of AI algorithms for medical imaging, discussing their functioning, limitations, benefits, applications, and evaluation strategies. The chapter concludes with considerations that might contribute to bringing these methods closer to the daily routine of healthcare professionals. © 2025 Elsevier Inc. All rights reserved.

2024

Disentangling morphed identities for face morphing detection

Autores
Caldeira, E; Neto, PC; Gonçalves, T; Damer, N; Sequeira, AF; Cardoso, JS;

Publicação
Science Talks

Abstract

2024

Classification of Keratitis from Eye Corneal Photographs using Deep Learning

Autores
Beirão, MM; Matos, J; Gonçalves, T; Kase, C; Nakayama, LF; Freitas, Dd; Cardoso, JS;

Publicação
IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024, Lisbon, Portugal, December 3-6, 2024

Abstract
Keratitis is an inflammatory corneal condition responsible for 10% of visual impairment in low- and middle-income countries (LMICs), with bacteria, fungi, or amoeba as the most common infection etiologies. While an accurate and timely diagnosis is crucial for the selected treatment and the patients' sight outcomes, due to the high cost and limited availability of laboratory diagnostics in LMICs, diagnosis is often made by clinical observation alone, despite its lower accuracy. In this study, we investigate and compare different deep learning approaches to diagnose the source of infection: 1) three separate binary models for infection type predictions; 2) a multitask model with a shared backbone and three parallel classification layers (Multitask V1); and, 3) a multitask model with a shared backbone and a multi-head classification layer (Multitask V2). We used a private Brazilian cornea dataset to conduct the empirical evaluation. We achieved the best results with Multitask V2, with an area under the receiver operating characteristic curve (AUROC) confidence intervals of 0.7413-0.7740 (bacteria), 0.83950.8725 (fungi), and 0.9448-0.9616 (amoeba). A statistical analysis of the impact of patient features on models' performance revealed that sex significantly affects amoeba infection prediction, and age seems to affect fungi and bacteria predictions. © 2024 IEEE.

2024

Classification of Keratitis from Eye Corneal Photographs using Deep Learning

Autores
Beirão, MM; Matos, J; Gonçalves, T; Kase, C; Nakayama, LF; Freitas, Dd; Cardoso, JS;

Publicação
CoRR

Abstract

  • 13
  • 318