Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CTM

2021

MFR 2021: Masked Face Recognition Competition

Autores
Boutros, F; Damer, N; Kolf, JN; Raja, K; Kirchbuchner, F; Ramachandra, R; Kuijper, A; Fang, PC; Zhang, C; Wang, F; Montero, D; Aginako, N; Sierra, B; Nieto, M; Erakin, ME; Demir, U; Ekenel, HK; Kataoka, A; Ichikawa, K; Kubo, S; Zhang, J; He, MJ; Han, D; Shan, SG; Grm, K; Struc, V; Seneviratne, S; Kasthuriarachchi, N; Rasnayaka, S; Neto, PC; Sequeira, AF; Pinto, JR; Saffari, M; Cardoso, JS;

Publicação
2021 INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB 2021)

Abstract
This paper presents a summary of the Masked Face Recognition Competitions (MFR) held within the 2021 International Joint Conference on Biometrics (IJCB 2021). The competition attracted a total of 10 participating teams with valid submissions. The affiliations of these teams are diverse and associated with academia and industry in nine different countries. These teams successfully submitted 18 valid solutions. The competition is designed to motivate solutions aiming at enhancing the face recognition accuracy of masked faces. Moreover, the competition considered the deployability of the proposed solutions by taking the compactness of the face recognition models into account. A private dataset representing a collaborative, multi-session, real masked, capture scenario is used to evaluate the submitted solutions. In comparison to one of the top-performing academic face recognition solutions, 10 out of the 18 submitted solutions did score higher masked face verification accuracy.

2021

Background Invariance by Adversarial Learning

Autores
Cruz, R; Prates, RM; Simas, EF; Costa, JFP; Cardoso, JS;

Publicação
2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR)

Abstract
Convolutional neural networks are shown to be vulnerable to changes in the background. The proposed method is an end-to-end method that augments the training set by introducing new backgrounds during the training process. These backgrounds are created by a generative network that is trained as an adversary to the model. A case study is explored based on overhead power line insulators detection using a drone - a training set is prepared from photographs taken inside a laboratory and then evaluated using photographs that are harder to collect from outside the laboratory. The proposed method improves performance by over 20% for this case study.

2021

My Eyes Are Up Here: Promoting Focus on Uncovered Regions in Masked Face Recognition

Autores
Neto, PC; Boutros, F; Pinto, JR; Saffari, M; Damer, N; Sequeira, AF; Cardoso, JS;

Publicação
PROCEEDINGS OF THE 20TH INTERNATIONAL CONFERENCE OF THE BIOMETRICS SPECIAL INTEREST GROUP (BIOSIG 2021)

Abstract
The recent Covid-19 pandemic and the fact that wearing masks in public is now mandatory in several countries, created challenges in the use of face recognition systems (FRS). In this work, we address the challenge of masked face recognition (MFR) and focus on evaluating the verification performance in FRS when verifying masked vs unmasked faces compared to verifying only unmasked faces. We propose a methodology that combines the traditional triplet loss and the mean squared error (MSE) intending to improve the robustness of an MFR system in the masked-unmasked comparison mode. The results obtained by our proposed method show improvements in a detailed step-wise ablation study. The conducted study showed significant performance gains induced by our proposed training paradigm and modified triplet loss on two evaluation databases.

2021

AUTOMOTIVE: A Case Study on AUTOmatic multiMOdal Drowsiness detecTIon for smart VEhicles

Autores
Esteves, T; Pinto, JR; Ferreira, PM; Costa, PA; Rodrigues, LA; Antunes, I; Lopes, G; Gamito, P; Abrantes, AJ; Jorge, PM; Lourenco, A; Sequeira, AF; Cardoso, JS; Rebelo, A;

Publicação
IEEE ACCESS

Abstract
As technology and artificial intelligence conquer a place under the spotlight in the automotive world, driver drowsiness monitoring systems have sparked much interest as a way to increase safety and avoid sleepiness-related accidents. Such technologies, however, stumble upon the observation that each driver presents a distinct set of behavioral and physiological manifestations of drowsiness, thus rendering its objective assessment a non-trivial process. The AUTOMOTIVE project studied the application of signal processing and machine learning techniques for driver-specific drowsiness detection in smart vehicles, enabled by immersive driving simulators. More broadly, comprehensive research on biometrics using the electrocardiogram (ECG) and face enables the continuous learning of subject-specific models of drowsiness for more efficient monitoring. This paper aims to offer a holistic but comprehensive view of the research and development work conducted for the AUTOMOTIVE project across the various addressed topics and how it ultimately brings us closer to the target of improved driver drowsiness monitoring.

2021

Privacy-Preserving Generative Adversarial Network for Case-Based Explainability in Medical Image Analysis

Autores
Montenegro, H; Silva, W; Cardoso, JS;

Publicação
IEEE ACCESS

Abstract
Although Deep Learning models have achieved incredible results in medical image classification tasks, their lack of interpretability hinders their deployment in the clinical context. Case-based interpretability provides intuitive explanations, as it is a much more human-like approach than saliency-map-based interpretability. Nonetheless, since one is dealing with sensitive visual data, there is a high risk of exposing personal identity, threatening the individuals' privacy. In this work, we propose a privacy-preserving generative adversarial network for the privatization of case-based explanations. We address the weaknesses of current privacy-preserving methods for visual data from three perspectives: realism, privacy, and explanatory value. We also introduce a counterfactual module in our Generative Adversarial Network that provides counterfactual case-based explanations in addition to standard factual explanations. Experiments were performed in a biometric and medical dataset, demonstrating the network's potential to preserve the privacy of all subjects and keep its explanatory evidence while also maintaining a decent level of intelligibility.

2021

Optimizing Person Re-Identification Using Generated Attention Masks

Autores
Capozzi, L; Pinto, JR; Cardoso, JS; Rebelo, A;

Publicação
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications - 25th Iberoamerican Congress, CIARP 2021, Porto, Portugal, May 10-13, 2021, Revised Selected Papers

Abstract
The task of person re-identification has important applications in security and surveillance systems. It is a challenging problem since there can be a lot of differences between pictures belonging to the same person, such as lighting, camera position, variation in poses and occlusions. The use of Deep Learning has contributed greatly towards more effective and accurate systems. Many works use attention mechanisms to force the models to focus on less distinctive areas, in order to improve performance in situations where important information may be missing. This paper proposes a new, more flexible method for calculating these masks, using a U-Net which receives a picture and outputs a mask representing the most distinctive areas of the picture. Results show that the method achieves an accuracy comparable or superior to those in state-of-the-art methods.

  • 103
  • 375