Cookies
Usamos cookies para melhorar nosso site e a sua experiência. Ao continuar a navegar no site, você aceita a nossa política de cookies. Ver mais
Fechar
  • Menu
Publicações

Publicações por José Alexandre Gonçalves

2015

DC Motors Modeling Resorting to a Simple Setup and Estimation Procedure

Autores
Goncalves, J; Lima, J; Costa, PG;

Publicação
CONTROLO'2014 - PROCEEDINGS OF THE 11TH PORTUGUESE CONFERENCE ON AUTOMATIC CONTROL

Abstract
This paper describes a procedure applied to model DC motors. An example of the procedure apply is shown for a 12V brushed DC motor, equipped with a 29:1 metal gearbox and an integrated quadrature encoder. It is described the developed setup applied to obtain the experimental data and the developed algorithm applied to estimate the actuator parameters. It was obtained an electro-mechanical dynamical model that describes the motor, its gear box and the encoder. The motivation to develop a simple and easy to assemble procedure that allows to model DC motors is due to the fact that these actuators are intensively used in mobile robotics, being realistic simulation, based in accurate sensor and actuator models, the key to speed up Robot Software developing time.

2016

Localization and Navigation of an Omnidirectional Mobile Robot: The Robot@Factory Case Study

Autores
Costa, PJ; Moreira, N; Campos, D; Goncalves, J; Lima, J; Costa, PL;

Publicação
IEEE REVISTA IBEROAMERICANA DE TECNOLOGIAS DEL APRENDIZAJE-IEEE RITA

Abstract
The Robot@Factory competition was recently included in Robotica, the main Portuguese Robotics Competition. This robot competition takes place in an emulated factory plant, where automatic guided vehicles (AGVs) must cooperate to perform tasks. To accomplish their goals, the AGVs must deal with localization, navigation, scheduling, and cooperation problems that must be solved autonomously. This robot competition can play an important role in education due to its inherent multidisciplinary approach, which can motivate students to bridge different technological areas. It can also play an important role in research and development, because it is expected that its outcomes will later be transferred to real-world problems in manufacturing or service robots. By presenting a scaled-down factory shop floor, this competition creates a benchmark that can be used to compare different approaches to the challenges that arise in this kind of environment. The ability to alter the environment, in some restricted areas, can usually promote the test and evaluation of different localization mechanisms, which is not possible in other competitions. This paper presents one of the possible approaches to build a robot capable of entering this competition. It can be used as a reference to current and new teams.

2016

Modeling and Simulation of a Hacked Neato XV-11 Laser Scanner

Autores
Campos, D; Santos, J; Goncalves, J; Costa, P;

Publicação
ROBOT 2015: SECOND IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 1

Abstract
Laser scanners are widely used in mobile robotics localization systems but, despite the enormous potential of its use, their high price tag is a major drawback, mainly for hobbyist and educational robotics practitioners that usually have a reduced budget. This paper presentes the modeling and simulation of a hacked Neato XV-11 Laser Scanner, having as motivation the fact that it is a very low cost alternative, when compared with the current available laser scanners. The modeling of a hacked Neato XV-11 Laser Scanner allows its realistic simulation and provides valuable information that can promote the development of better designs of robot localization systems based on this sensor. The sensor simulation was developed using SimTwo, which is a realistic simulation software that can support several types of robots.

2015

Modeling of a Low Cost Laser Scanner Sensor

Autores
Lima, J; Goncalves, J; Costa, PJ;

Publicação
CONTROLO'2014 - PROCEEDINGS OF THE 11TH PORTUGUESE CONFERENCE ON AUTOMATIC CONTROL

Abstract
A laser scanner is a popular sensor widely used in industry and mobile robots applications that measures the distance to the sensor on a slice of the plan. This sensor can be used in mobile robots localization task. In this paper, a low cost laser scanner sensor is modelled so that it can be implemented in a simulation environment. The simulation reflects the laser model properties such as target colour dependences, noise, limits and time constraints. A correction of the laser scanner nonlinearities is proposed. The noise spectrum is also addressed.

2016

Particle Filter SLAM on FPGA: A Case Study on Robot@Factory Competition

Autores
Sileshi, BG; Oliver, J; Toledo, R; Goncalves, J; Costa, P;

Publicação
ROBOT 2015: SECOND IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 1

Abstract
Particle filters are sequential Monte Carlo estimation methods with applications in the field of mobile robotics for performing tasks such as tracking, simultaneous localization and mapping (SLAM) and navigation, by dealing with the uncertainties and/or noise generated by the sensors as well as with the intrinsic uncertainties of the environment. This work presents a field programmable gate arrays (FPGA) implementation of a particle filter applied to SLAM problem based on a low cost Neato XV-11 laser scanner sensor. Post processing is performed on data provided by a realistic simulation of a differential robot, equipped with a hacked Neato XV-11 laser scanner, that navigates in the Robot@Factory competition maze. The robot was simulated using SimTwo, which is a realistic simulation software that can support several types of robots. The simulator provides the robot ground truth, odometry and the laser scanner data. The results achieved from this study confirmed the possible use such low cost laser scanner for different robotics applications.

2017

Brain emotional learning based control of a SDOF structural system with a MR damper

Autores
César, MB; Gonçalves, J; Coelho, J; De Barros, RC;

Publicação
Lecture Notes in Electrical Engineering

Abstract
This paper describes the application of a Brain Emotional Learning (BEL) controller to improve the response of a SDOF structural system under an earthquake excitation using a magnetorheological (MR) damper. The main goal is to study the performance of a BEL based semi-active control system to generate the control signal for a MR damper. The proposed approach consists of a two controllers: a primary controller based on a BEL algorithm that determines the desired damping force from the system response and a secondary controller that modifies the input current to the MR damper to generate a reference damping force. A parametric model of the damper is used to predict the damping force based on the piston motion and also the current input. A Simulink model of the structural system is developed to analyze the effectiveness of the semi-active controller. Finally, the numerical results are presented and discussed. © Springer International Publishing Switzerland 2017.

  • 1
  • 10