Cookies
Usamos cookies para melhorar nosso site e a sua experiência. Ao continuar a navegar no site, você aceita a nossa política de cookies. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Jean Sumaili

2015

A Hybrid Short-term Solar Power Forecasting Tool

Autores
Filipe, JM; Bessa, RJ; Sumaili, J; Tomé, R; Sousa, JN;

Publicação
2015 18TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEM APPLICATION TO POWER SYSTEMS (ISAP)

Abstract
Photovoltaic (PV) solar power capacity is growing in several countries, either concentrated in medium/large size solar parks or distributed by the medium and low voltage grid. Solar power forecasting is a key input for supporting grid management, participation in the electricity market and maintenance planning. This paper proposes a new forecasting system that is a hybrid of different models, such as electrical and statistical models, as well as different Numerical Weather Prediction (NWP) sources. The time horizon is 48 hours ahead. The proposed model was operationalized and tested in a real PV installation located in North Portugal with 16 kW.

2016

Assessing DER flexibility in a German distribution network for different scenarios and degrees of controllability

Autores
Silva, A; Carvalho, L; Bessa, R; Sumaili, J; Seca, L; Schaarschmidt, G; Silva, J; Matos, M; Hermes, R;

Publicação
IET Conference Publications

Abstract
This paper evaluates the flexibility provided by distributed energy resources (DER) in a real electricity distribution network in Germany. Using the Interval Constrained Power Flow (ICPF) tool, the maximum range of flexibility available at the primary substation was obtained for different operation scenarios. Three test cases were simulated, differing mainly in the considered level of renewable energy sources (RES) production. For each test case, the obtained results enabled the construction of flexibility areas that define, for a given operating point, the limits of feasible values for the active and reactive power that can be exchanged between the TSO and the DSO. Furthermore, the tool can also be used to evaluate the contribution from each type of DER to the overall distribution network flexibility.

2015

Coping with Wind Power Uncertainty in Unit Commitment: a Robust Approach using the New Hybrid Metaheuristic DEEPSO

Autores
Pinto, R; Carvalho, LM; Sumaili, J; Pinto, MSS; Miranda, V;

Publicação
2015 IEEE EINDHOVEN POWERTECH

Abstract
The uncertainty associated with the increasingly wind power penetration in power systems must be considered when performing the traditional day-ahead scheduling of conventional thermal units. This uncertainty can be represented through a set of representative wind power scenarios that take into account the time-dependency between forecasting errors. To create robust Unit Commitment ( UC) schedules, it is widely seen that all possible wind power scenarios must be used. However, using all realizations of wind power might be a poor approach and important savings in computational effort can be achieved if only the most representative subset is used. In this paper, the new hybrid metaheuristic DEEPSO and clustering techniques are used in the traditional stochastic formulation of the UC problem to investigate the robustness of the UC schedules with increasing number of wind power scenarios. For this purpose, expected values for operational costs, wind spill, and load curtailment for the UC solutions are compared for a didactic 10 generator test system. The obtained results shown that it is possible to reduce the computation burden of the stochastic UC by using a small set of representative wind power scenarios previously selected from a high number of scenarios covering the entire probability distribution function of the forecasting uncertainty.

2015

Estimation of the Flexibility Range in the Transmission-Distribution Boundary

Autores
Heleno, M; Soares, R; Sumaili, J; Bessa, RJ; Seca, L; Matos, MA;

Publicação
2015 IEEE EINDHOVEN POWERTECH

Abstract
The smart grid concept increases the observability and controllability of the distribution system, which creates conditions for bi-directional control of Distributed Energy Resources (DER). The high penetration of Renewable Energy Resources (RES) in the distribution grid may create technical problems (e.g., voltage problems, branch congestion) in both transmission and distribution systems. The flexibility from DER can be explored to minimize RES curtailment and increase its hosting capacity. This paper explores the use of the Monte Carlo Simulation to estimate the flexibility range of active and reactive power at the boundary nodes between transmission and distribution systems, considering the available flexibility at the distribution grid level (e.g., demand response, on-load tap changer transformers). The obtained results suggest the formulation of an optimization problem in order to overcome the limitations of the Monte Carlo Simulation, increasing the capability to find extreme points of the flexibility map and reducing the computational effort.

2016

EvolvDSO grid management tools to support TSO-DSO cooperation

Autores
Fonseca, N; Silva, J; Silva, A; Sumaili, J; Seca, L; Bessa, R; Pereira, J; Matos, M; Matos, P; Morais, AC; Caujolle, M; Sebastian Viana, M;

Publicação
IET Conference Publications

Abstract
This paper presents two contributions developed in the framework of evolvDSO Project to support TSO-DSO cooperation. The Interval Constrained Interval Power Flow (ICPF) tool estimates the flexibility range at primary substations by aggregating the distribution network flexibility. The Sequential Optimal Power Flow (SOPF) tool defines a set of control actions that keep the active and reactive power flow within pre-agreed limits at primary substations level, by integrating different types of flexibility levers. Several study test cases were simulated using data of four real distribution networks from France and Portugal, with different demand/generation profiles and several degrees of flexibility.

2015

IMICV fault analysis method with multiple PV grid-connected inverters for distribution systems

Autores
Moura, AP; Lopes, JAP; de Moura, AAF; Sumaili, J; Moreira, CL;

Publicação
ELECTRIC POWER SYSTEMS RESEARCH

Abstract
A novel faults analysis method with multiple PV grid-connected inverters for distribution systems is proposed. The aforesaid proposed method Inverter Matrix Impedance Current Vector (IMICV) employs symmetrical components combined with a matrix denominated of Inverter Matrix Impedance and with a vector denominated Impedance-Current Vector which are formed by inspection. This matrix and this vector are used to solve a linear system of equations where the following post-fault variables are: current in substation, the voltage at the fault point and voltages in the PV grid-connected nodes. A comparison of results obtained using the new method with the results of the professional software ANAFAS validates the method proposed. Computer simulations show that the proposed method for classical shunt faults analysis is efficient, accurate and easy to program.

  • 1
  • 6