2026
Autores
de Azambuja R.X.; Morais A.J.; Filipe V.;
Publicação
Lecture Notes in Networks and Systems
Abstract
Deep learning and large language models (LLMs) have recently enabled studies in state-of-the-art technologies that enhance recommender systems. This research focuses on solving the next-item recommendation problem using these challenging technologies in Web applications, specifically focusing on a case study in the wine domain. This paper presents the characterization of the framework developed for the object of study: adaptive recommendation based on new modeling of the initial data to explore the user’s dynamic taste profile. Following the design science research methodology, the following contributions are presented: (i) a novel dataset of wines called X-Wines; (ii) an updated recommender model called X-Model4Rec—eXtensible Model for Recommendation supported in attention and transformer mechanisms which constitute the core of the LLMs; and (iii) a collaborative Web platform to support adaptive wine recommendation to users in an online environment. The results indicate that the solutions proposed in this research can improve recommendations in online environments and promote further scientific work on specific topics.
2026
Autores
Araújo, A; de Jesus, G; Nunes, S;
Publicação
Lecture Notes in Computer Science
Abstract
Developing information retrieval (IR) systems that enable access across multiple languages is crucial in multilingual contexts. In Timor-Leste, where Tetun, Portuguese, English, and Indonesian are official and working languages, no cross-lingual information retrieval (CLIR) solutions currently exist to support information access across these languages. This study addresses that gap by investigating CLIR approaches tailored to the linguistic landscape of Timor-Leste. Leveraging an existing monolingual Tetun document collection and ad-hoc text retrieval baselines, we explore the feasibility of CLIR for Tetun. Queries were manually translated into Portuguese, English, and Indonesian to create a multilingual query set. These were then automatically translated back into Tetun using Google Translate and several large language models, and used to retrieve documents in Tetun. Results show that Google Translate is the most reliable tool for Tetun CLIR overall, and the Hiemstra LM consistently outperforms BM25 and DFR BM25 in cross-lingual retrieval performance. However, overall effectiveness remains up to 26.95% points lower than that of the monolingual baseline, underscoring the limitations of current translation tools and the challenges of developing an effective CLIR for Tetun. Despite these challenges, this work establishes the first CLIR baseline for Tetun ad-hoc text retrieval, providing a foundation for future research in this under-resourced setting. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
2026
Autores
Damas, J; Nunes, S;
Publicação
Lecture Notes in Computer Science
Abstract
Understanding user behavior in search systems is essential for improving retrieval effectiveness and user satisfaction. While prior research has extensively examined general-purpose web search engines, domain-specific contexts—such as sports information—remain comparatively underexplored. In this study, we analyze over 400,000 interaction log entries from a sports-oriented search engine collected over a two-week period. Our analysis combines classic query-level metrics (e.g., frequency distributions, query lengths) with a detailed examination of click behavior, including entropy-based intent variability and a custom query quality scoring model. Compared to established baselines from general and specialized search environments, we observe a high proportion of new and single-term queries, as well as a notable lack of representativeness among top queries. These findings reveal patterns shaped by the event-driven and entity-centric nature of sports content, offering actionable insights for the design of domain-specific retrieval systems. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
2026
Autores
Morgado, L;
Publicação
IMMERSIVE LEARNING RESEARCH NETWORK, ILRN 2025
Abstract
This work reflects upon what Immersion can mean from the perspective of an Artificial Intelligence (AI). Applying the lens of immersive learning theory, it seeks to understand whether this new perspective supports ways for AI participation in cognitive ecologies. By treating AI as a participant rather than a tool, it explores what other participants (humans and other AIs) need to consider in environments where AI can meaningfully engage and contribute to the cognitive ecology, and what the implications are for designing such learning environments. Drawing from the three conceptual dimensions of immersion-System, Narrative, and Agency-this work reinterprets AIs in immersive learning contexts. It outlines practical implications for designing learning environments where AIs are surrounded by external digital services, can interpret a narrative of origins, changes, and structural developments in data, and dynamically respond, making operational and tactical decisions that shape human-AI collaboration. Finally, this work suggests how these insights might influence the future of AI training, proposing that immersive learning theory can inform the development of AIs capable of evolving beyond static models. This paper paves the way for understanding AI as an immersive learner and participant in evolving human-AI cognitive ecosystems.
2026
Autores
Beck, D; Morgado, L; O'Shea, P;
Publicação
IMMERSIVE LEARNING RESEARCH NETWORK, ILRN 2025
Abstract
Since the publication of the 2020 paper, Finding the Gaps About Uses of Immersive Learning Environments: A Survey of Surveys, the landscape of immersive learning environments (ILEs) has continued to evolve rapidly. This update aims to revisit the gaps identified in that previous research and explore emerging trends. We conducted an extensive review of new surveys published after that paper's cut date. Our findings reveal a significant amount of new published reviews (n = 64), more than doubling the original corpus (n = 47). The results highlighted novel themes of usage of immersive environments, helping bridge some 2020 research gaps. This paper discusses those developments and presents a consolidated perspective on the uses of immersive learning environments.
2026
Autores
Rocha, TDJVD; Nunes, RR; Barroso, JMP;
Publicação
Lecture Notes in Networks and Systems
Abstract
The video game industry has grown to become one of the largest in the market, surpassing even the film industry over a decade ago (Statista in Video game industry revenue worldwide 2000–2020). However, the development of games designed with visually impaired players in mind is still almost non-existent when compared to the sheer number of games released yearly. NonVisual Pong is our approach to addressing this challenge, providing blind players with a way to engage in competitive fun through gaming. We took the original Pong game from 1972 and fully adapted it to be played using only a controller—no visual display required. Following the development process, we tested our implementation with experts, discovering that, overall, our game was easy to pick up, required no overly complex setup, and successfully delivered the intended experience. Players enjoyed a balanced challenge and immersion, facilitated by audio cues and the controller’s vibrations. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.