Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por HumanISE

2014

Parallelism in Ada: Status and Prospects

Autores
Pinho, LM; Moore, B; Michell, S;

Publicação
RELIABLE SOFTWARE TECHNOLOGIES - ADA-EUROPE 2014

Abstract
Recently, a semantic and runtime model for parallel programming was proposed for addition to Ada. The proposal uses program annotations (expressed as Ada 2012 aspects) to inform the compiler of opportunities for parallel computation, and also offers the ability to specify details of parallel execution. The proposal includes support for specialized behaviors via dedicated libraries and a runtime environment that builds on pools of worker tasks. This paper extends that work by adding notations for data types and parallel blocks, simplifying some of the parallel notations and eliminating obstructions to the implementation of efficient parallel algorithms.

2014

Editorial

Autores
Pinho, LM;

Publicação
Ada User Journal

Abstract

2014

P-SOCRATES: a Parallel Software Framework for Time-Critical Many-Core Systems

Autores
Miguel Pinho, LM; Quinones, E; Bertogna, M; Marongiu, A; Pereira Carlos, JP; Scordino, C; Ramponi, M;

Publicação
2014 17TH EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN (DSD)

Abstract
The advent of next-generation many-core embedded platforms has the chance of intercepting a converging need for predictable high-performance coming from both the High-Performance Computing (HPC) and Embedded Computing (EC) domains. On one side, new kinds of HPC applications are being required by markets needing huge amounts of information to be processed within a bounded amount of time. On the other side, EC systems are increasingly concerned with providing higher performance in real-time, challenging the performance capabilities of current architectures. This converging demand, however, raises the problem about how to guarantee timing requirements in presence of parallel execution. This paper presents the approach of project P-SOCRATES for the design of an integrated framework for the execution of workload-intensive applications with real-time requirements on top of nextgeneration commercial-off-the-shelf (COTS) platforms based on many-core accelerated architectures. The time-criticality and parallelisation challenges are addressed by merging techniques coming from both HPC and EC domains, identifying the main sources of indeterminism and proposing efficient mapping and scheduling algorithms, along with the associated timing and schedulability analysis, to guarantee the real-time and performance requirements of the applications.

2014

Editorial

Autores
Pinho, LM;

Publicação
Ada User Journal

Abstract

2014

Safe parallel programming in Ada with language extensions

Autores
Taft, ST; Moore, B; Pinho, LM; Michell, S;

Publicação
HILT 2014 - Proceedings of the ACM Conference on High Integrity Language Technology

Abstract
The increased presence of parallel computing platforms brings concerns to the general purpose domain that were previously prevalent only in the specific niche of high-performance computing. As parallel programming technologies become more prevalent in the form of new emerging programming languages and extensions of existing languages, additional safety concerns arise as part of the paradigm shift from sequential to parallel behaviour. In this paper, we propose various syntax extensions to the Ada language, which provide mechanisms whereby the compiler is given the necessary semantic information to enable the implicit and explicit parallelization of code. The model is based on earlier work, which separates parallelism specification from concurrency implementation, but proposes an updated syntax with additional mechanisms to facilitate the development of safer parallel programs. Copyright 2014 ACM.

2014

The challenge of time-predictability in modern many-core architectures

Autores
Nelis, V; Yomsi, PM; Pinho, LM; Fonseca, JC; Bertogna, M; Quinones, E; Vargas, R; Marongiu, A;

Publicação
OpenAccess Series in Informatics

Abstract
The recent technological advancements and market trends are causing an interesting phenomenon towards the convergence of High-Performance Computing (HPC) and Embedded Computing (EC) domains. Many recent HPC applications require huge amounts of information to be processed within a bounded amount of time while EC systems are increasingly concerned with providing higher performance in real-time. The convergence of these two domains towards systems requiring both high performance and a predictable time-behavior challenges the capabilities of current hardware architectures. Fortunately, the advent of next-generation many-core embedded platforms has the chance of intercepting this converging need for predictability and high-performance, allowing HPC and EC applications to be executed on efficient and powerful heterogeneous architectures integrating general-purpose processors with many-core computing fabrics. However, addressing this mixed set of requirements is not without its own challenges and it is now of paramount importance to develop new techniques to exploit the massively parallel computation capabilities of many-core platforms in a predictable way. © Vincent Nélis, Patrick Meumeu Yomsi, Luís Miguel Pinho, José Carlos Fonseca, Marko Bertogna, Eduardo Quiñones, Roberto Vargas, and Andrea Marongiu.

  • 482
  • 663