Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por HumanISE

2015

Message-oriented middleware for smart grids

Autores
Albano, M; Ferreira, LL; Pinho, LM; Alkhawaja, AR;

Publicação
COMPUTER STANDARDS & INTERFACES

Abstract
In order to increase the efficiency in the use of energy resources, the electrical grid is slowly evolving into a smart(er) grid that allows users' production and storage of energy, automatic and remote control of appliances, energy exchange between users, and in general optimizations over how the energy is managed and consumed. One of the main innovations of the smart grid is its organization over an energy plane that involves the actual exchange of energy, and a data plane that regards the Information and Communication Technology (ICT) infrastructure used for the management of the grid's data. In the particular case of the data plane, the exchange of large quantities of data can be facilitated by a middleware based on a messaging bus. Existing messaging buses follow different data management paradigms (e.g.: request/response, publish/subscribe, data-oriented messaging) and thus satisfy smart grids' communication requirements at different extents. This work contributes to the state of the art by identifying, in existing standards and architectures, common requirements that impact in the messaging system of a data plane for the smart grid. The paper analyzes existing messaging bus paradigms that can be used as a basis for the ICT infrastructure of a smart grid and discusses how these can satisfy smart grids' requirements.

2015

An Energy Flexibility Framework on the Internet of Things

Autores
Pedersen, TB; Le Gully, T; Pedersen, PD; Ferreira, LL; Šikšnys, L; Stluka, P; Albano, M; Skou, A; Olsen, P;

Publicação
The Success of European Projects using New Information and Communication Technologies

Abstract
This paper presents a framework for management of flexible energy loads in the context of the Internet of Things and the Smart Grid. The framework takes place in the European project Arrowhead, and aims at taking advantage of the flexibility (in time and power) of energy production and consumption offered by sets of devices, appliances or buildings, to help at solving the issue of fluctuating energy production of renewable energies. The underlying concepts are explained, the actors involved in the framework, their incentives and interactions are detailed, and a technical overview is provided. An implementation of the framework is presented, as well as the expected results of the pilots.

2015

Allocation of Parallel Real-Time Tasks in Distributed Multi-core Architectures supported by an FTT-SE Network

Autores
Martínez, Ricardo Garibay; Nelissen, Geoffrey; Ferreira, Luís Lino; Pinho, Luís Miguel;

Publicação

Abstract
Distributed real-time systems such as automotive applications are becoming larger and more complex, thus, requiring the use of more powerful hardware and software architectures. Furthermore, those distributed applications commonly have stringent real-time constraints. This implies that such applications would gain in flexibility if they were parallelized and distributed over the system. In this paper, we consider the problem of allocating fixed-priority fork-join Parallel/Distributed real-time tasks onto distributed multi-core nodes connected through a Flexible Time Triggered Switched Ethernet network. We analyze the system requirements and present a set of formulations based on a constraint programming approach. Constraint programming allows us to express the relations between variables in the form of constraints. Our approach is guaranteed to find a feasible solution, if one exists, in contrast to other approaches based on heuristics. Furthermore, approaches based on constraint programming have shown to obtain solutions for these type of formulations in reasonable time.

2015

Architecture to Support Quality of Service in Arrowhead Systems

Autores
Albano, Michele; Garibay-Martínez, Ricardo; Lino Ferreira, Luis;

Publicação
INForum - Simpósio de Informática (INFORUM 2015).

Abstract
The Arrowhead project [1] considers to normalize all interactions involving embedded systems by mediating them through services. The Service Oriented Architecture (SOA) paradigm is applied to both the interactions that provide the service requested by the user, and other support actions such as the authentication and registration of the devices, and the services they provide, the look-up of devices and service provided, and orchestration of services for creation of more complex services. To this purpose, services are divided into Core Services, which are present in every environment supporting Arrowhead applications, and user services that implement the applications. The Core Services set comprises, at least, Authentication Service, Registration Service and Orchestration Service.

2015

Holistic Analysis for Fork-Join Distributed Tasks supported by the FTT-SE Protocol

Autores
Martínez, Ricardo Garibay; Nelissen, Geoffrey; Ferreira, Luís Lino; Pedreiras, Paulo; Pinho, Luís Miguel;

Publicação

Abstract
This paper presents a holistic timing analysis for fixed-priority fork-join Parallel/Distributed tasks (P/D tasks) over a Flexible Time Triggered - Switched Ethernet (FTT-SE) network. The holistic approach considers both time-triggered and eventtriggered tasks/messages.

2015

Adaptive offloading for infotainment systems

Autores
Ferreira, LL; Pinho, LM; Albano, M; Teixeira, C;

Publicação
ACM SIGBED Review

Abstract
Infotainment applications in vehicles are currently supported both by the in-vehicle platform, as well as by user's smart devices, such as smartphones and tablets. More and more the user expects that there is a continuous service of applications inside or outside of the vehicle, provided in any of these devices (a simple but common example is hands-free mobile phone calls provided by the vehicle platform). With the increasing complexity of 'apps', it is necessary to support increasing levels of Quality of Service (QoS), with varying resource requirements. Users may want to start listening to music in the smartphone, or video in the tablet, being this application transparently 'moved' into the vehicle when it is started. This paper presents an adaptable offloading mechanism, following a service-oriented architecture pattern, which takes into account the QoS requirements of the applications being executed when making decisions.

  • 431
  • 647