Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por HumanISE

2016

Perceiving Depth: Optical versus Video See-through

Autores
Medeiros, D; Sousa, M; Mendes, D; Raposo, A; Jorge, J;

Publicação
22ND ACM CONFERENCE ON VIRTUAL REALITY SOFTWARE AND TECHNOLOGY (VRST 2016)

Abstract
Head-Mounted Displays (HMDs) and similar 3D visualization devices are becoming ubiquitous. Going a step forward, HMD seethrough systems bring virtual objects to real world settings, allowing augmented reality to be used in complex engineering scenarios. Of these, optical and video see-through systems differ on how the real world is captured by the device. To provide a seamless integration of real and virtual imagery, the absolute depth and size of both virtual and real objects should match appropriately. However, these technologies are still in their early stages, each featuring different strengths and weaknesses which affect the user experience. In this work we compare optical to video see-through systems, focusing on depth perception via exocentric and egocentric methods. Our study pairs Meta Glasses, an off-the-shelf optical see-through, to a modified Oculus Rift setup with attached video-cameras, for video see-through. Results show that, with the current hardware available, the video see-through configuration provides better overall results. These experiments and our results can help interaction designers for both virtual and augmented reality conditions.

2016

The Benefits of DOF Separation in Mid-air 3D Object Manipulation

Autores
Mendes, D; Relvas, F; Ferreira, A; Jorge, J;

Publicação
22ND ACM CONFERENCE ON VIRTUAL REALITY SOFTWARE AND TECHNOLOGY (VRST 2016)

Abstract
Object manipulation is a key feature in almost every virtual environment. However, it is difficult to accurately place an object in immersive virtual environments using mid-air gestures that mimic interactions in the physical world, although being a direct and natural approach. Previous research studied mouse and touch based interfaces concluding that separation of degrees-of-freedom (DOF) led to improved results. In this paper, we present the first user evaluation to assess the impact of explicit 6 DOF separation in mid-air manipulation tasks. We implemented a technique based on familiar virtual widgets that allow single DOF control, and compared it against a direct approach and PRISM, which dynamically adjusts the ratio between hand and object motions. Our results suggest that full DOF separation benefits precision in spatial manipulations, at the cost of additional time for complex tasks. From our results we draw guidelines for 3D object manipulation in mid-air.

2016

Expeditious illustration of layer-cake models on and above a tactile surface

Autores
Lopes, DS; Mendes, D; Sousa, M; Jorge, J;

Publicação
COMPUTERS & GEOSCIENCES

Abstract
Too often illustrating and visualizing 3D geological concepts are performed by sketching in 2D mediums, which may limit drawing performance of initial concepts. Here, the potential of expeditious geological modeling brought by hand gestures is explored. A spatial interaction system was developed to enable rapid modeling, editing, and exploration of 3D layer-cake objects. User interactions are acquired with motion capture and touch screen technologies. Virtual immersion is guaranteed by using stereoscopic technology. The novelty consists of performing expeditious modeling of coarse geological features with only a limited set of hand gestures. Results from usability-studies show that the proposed system is more efficient when compared to a windows-icon-menu-pointer modeling application.

2016

Separating Degrees of Freedom for Object Manipulation in VR

Autores
Relvas, F; Mendes, D; Ferreira, A; Jorge, J;

Publicação
2016 23RD PORTUGUESE MEETING ON COMPUTER GRAPHICS AND INTERACTION (EPCGI)

Abstract
Manipulating objects is an essential aspect in virtual environments. Nonetheless, object positioning in immersive virtual environments relying in direct and natural approaches is still difficult. Previous research concluded that degrees-of-freedom separation in mouse and touch interfaces led to positive results. In this document we present a user evaluation to assess if explicit separation of degrees-of-freedom also benefits mid-air manipulation tasks. We implemented a virtual widget based technique that allows users to control a single DOF, and compared it against a direct approach and the PRISM technique, which adjusts the ratio between the hand and object movement. The results of our assessment suggest that full DOF separation benefits precision in spatial manipulations, at the expense of additional time for complex tasks. From these results we proposed a new technique that combines different aspects from the three techniques compared in our assessment.

2016

Kidney Segmentation in 3D CT Images Using B-Spline Explicit Active Surfaces

Autores
Torres, HR; Oliveira, B; Queiros, S; Morais, P; Fonseca, JC; D'hooge, J; Rodrigues, NF; Vilaca, JL;

Publicação
2016 IEEE INTERNATIONAL CONFERENCE ON SERIOUS GAMES AND APPLICATIONS FOR HEALTH

Abstract
In this manuscript, we propose to adapt the B-Spline Explicit Active Surfaces (BEAS) framework for semi-automatic kidney segmentation in computed tomography (CT) images. To study the best energy functional for kidney CT extraction, three different localized region-based energies were implemented within the BEAS framework, namely localized Chan-Vese, localized Yezzi, and signed localized Yezzi energies. Moreover, a novel gradient-based regularization term is proposed. The method was applied on 18 kidneys from 9 CT datasets, with different image properties. Several energy combinations were contrasted using surface-based comparison against ground truth meshes, assessing their accuracy and robustness against surface initialization. Overall, the hybrid energy functional combining the localized signed Yezzi energy with gradient-based regularization simultaneously showed the highest accuracy and the lowest sensitivity to the initialization. Volumetric analysis demonstrated the feasibility of the method from a clinical point of view, with similar reproducibility to manual observers.

2016

Assessment of Laparoscopic Skills Performance: 2D Versus 3D Vision and Classic Instrument Versus New Hand-Held Robotic Device for Laparoscopy

Autores
Leite, M; Carvalho, AF; Costa, P; Pereira, R; Moreira, A; Rodrigues, N; Laureano, S; Correia Pinto, J; Vilaca, JL; Leao, P;

Publicação
SURGICAL INNOVATION

Abstract
Introduction and Objectives. Laparoscopic surgery has undeniable advantages, such as reduced postoperative pain, smaller incisions, and faster recovery. However, to improve surgeons' performance, ergonomic adaptations of the laparoscopic instruments and introduction of robotic technology are needed. The aim of this study was to ascertain the influence of a new hand-held robotic device for laparoscopy (HHRDL) and 3D vision on laparoscopic skills performance of 2 different groups, naive and expert. Materials and Methods. Each participant performed 3 laparoscopic tasksPeg transfer, Wire chaser, Knotin 4 different ways. With random sequencing we assigned the execution order of the tasks based on the first type of visualization and laparoscopic instrument. Time to complete each laparoscopic task was recorded and analyzed with one-way analysis of variance. Results. Eleven experts and 15 naive participants were included. Three-dimensional video helps the naive group to get better performance in Peg transfer, Wire chaser 2 hands, and Knot; the new device improved the execution of all laparoscopic tasks (P < .05). For expert group, the 3D video system benefited them in Peg transfer and Wire chaser 1 hand, and the robotic device in Peg transfer, Wire chaser 1 hand, and Wire chaser 2 hands (P < .05). Conclusion. The HHRDL helps the execution of difficult laparoscopic tasks, such as Knot, in the naive group. Three-dimensional vision makes the laparoscopic performance of the participants without laparoscopic experience easier, unlike those with experience in laparoscopic procedures.

  • 384
  • 648