Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por HumanISE

2017

Classification algorithms for body posture

Autores
Silva, S; Queirós, S; Moreira, AH; Oliveira, E; Rodrigues, NF; Vilaça, JL;

Publicação
2017 IEEE 5TH INTERNATIONAL CONFERENCE ON SERIOUS GAMES AND APPLICATIONS FOR HEALTH (SEGAH)

Abstract
Bad posture while working or playing videogames can affect our life quality and impose negative economic consequences over time. There's raising concern in companies regarding worker's wellness, many adopting preventive measures. Specialized training in posture is important to prevent occupational activities risks and to foster health promotion. In this paper, we present a study of different classifiers to detect good and bad body postures in workplaces. A set classifiers, namely artificial neural networks, support vector machine, decision trees, discriminant analysis, logistic regression, treebagger and naïve Bayes, were tested in three-dimensional acquisitions of 100 people for automatic determination of the type of body posture. The best classifier was the treebagger with a rating of True Positive and True Negative of 93.3% and 96.2%, respectively.

2017

Instrumented vest for postural reeducation

Autores
Carvalho, P; Queirós, S; Moreira, A; Brito, JH; Veloso, F; Terroso, M; Rodrigues, NF; Vilaça, JL;

Publicação
2017 IEEE 5TH INTERNATIONAL CONFERENCE ON SERIOUS GAMES AND APPLICATIONS FOR HEALTH (SEGAH)

Abstract
According to the World Health Organization, 85% of the world population suffers from back pain, which accounts for over 50% of physical incapacity, permanent or temporary, among individuals in working-age. In most situations, this is caused by an incorrect posture, which causes changes in the spine structure. This paper proposes an instrumented vest for postural reeducation to address this issue. The vest has a set of inertial measurement unit (IMU) sensors strategically placed to provide an accurate characterization of the spine profile. The sensor readings are classified by a central processing unit. In case of an incorrect posture, users are alerted by an audio signal and through vibration. The wearable system works in stand-alone mode, but can also communicate with external systems through an API. Two applications were developed to communicate with the device through this API, one intended to run on a desktop computer and the other one for Android devices. These applications monitor spine profiles in real time and notify the user of incorrect postures, among other functionalities. The device prototype and the applications have been tested by 10 individuals in two different settings, first without any kind of feedback and then with feedback enabled. The tests demonstrate the usability, accuracy and robustness of the system, proving its high level of reliability in classifying postures and effectiveness for postural reeducation. In the future, the system is expected to be used as a platform for a serious game, to promote posture reeducation in a real world scenario.

2017

Industrial Plant Layout Analyzing Based on SNA

Autores
Varela, MLR; Manupati, VK; Manoj, K; Putnik, GD; Araújo, A; Madureira, AM;

Publicação
INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA 2016)

Abstract
Social network analysis (SNA) is a widely studied research topics, which has been increasingly being applied for solving different kind of problems, including industrial manufacturing ones. This paper focuses on the application of SNA on an industrial plant layout problem. The study aims at analyzing the importance of using SNA techniques to analyze important relations between entities in a manufacturing environment, such as jobs and resources in the context of industrial plant layout analysis. The study carried out enabled to obtain relevant results for the identification of relations among these entities for supporting to establish an appropriate plant layout for producing the jobs.

2017

Evaluation of the Simulated Annealing and the Discrete Artificial Bee Colony in the Weight Tardiness Problem with Taguchi Experiments Parameterization

Autores
Santos, AS; Madureira, AM; Varela, MR;

Publicação
INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA 2016)

Abstract
Meta-Heuristics (MH) are the most used optimization techniques to approach Complex Combinatorial Problems (COPs). Their ability to move beyond the local optimums make them an especially attractive choice to solve complex computational problems, such as most scheduling problems. However, the knowledge of what Meta-Heuristics perform better in certain problems is based on experiments. Classic MH, as the Simulated Annealing (SA) has been deeply studied, but newer MH, as the Discrete Artificial Bee Colony (DABC) still need to be examined in more detail. In this paper DABC has been compared with SA in 30 academic benchmark instances of the weighted tardiness problem (1 parallel to Sigma w(j)T(j)). Both MH parameters were fine-tuned with Taguchi Experiments. In the computational study DABC performed better and the subsequent statistical study demonstrated that DABC is more prone to find near-optimum solutions. On the other hand SA appeared to be more efficient.

2017

Metaheuristics Parameter Tuning Using Racing and Case-Based Reasoning in Scheduling Systems

Autores
Pereira, I; Madureira, A; Cunha, B;

Publicação
INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA 2016)

Abstract
Real world optimization problems like Scheduling are generally complex, large scaled, and constrained in nature. Thereby, classical operational research methods are often inadequate to efficiently solve them. Metaheuristics (MH) are used to obtain near-optimal solutions in an efficient way, but have different numerical and/or categorical parameters which make the tuning process a very time-consuming and tedious task. Learning methods can be used to aid with the parameter tuning process. Racing techniques have been used to evaluate, in a refined and efficient way, a set of candidates and discard those that appear to be less promising during the evaluation process. Case-based Reasoning (CBR) aims to solve new problems by using information about solutions to previous similar problems. A novel Racing+CBR approach is proposed and brings together the better of the two techniques. A computational study for the resolution of the scheduling problem is presented, concluding about the effectiveness of the proposed approach.

2017

Specification of an Architecture for Self-organizing Scheduling Systems

Autores
Madureira, A; Pereira, I; Cunha, B;

Publicação
INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA 2016)

Abstract
This paper presents the specification of an architecture for self-organizing scheduling systems. The proposed architecture uses learning by observing the experts and interpretation of scheduling experience. The design of intelligent systems that learn with experts is a very hard and challenging domain because current systems are becoming more and more complex and subject to rapid changes. In this work, different areas as Intelligent and Adaptive Human-Machine Interfaces, Metacognition and Learning from Observation, Self-managed Systems, amongst others, are joint together resulting in a global fully integrated architecture for self-organizing scheduling systems.

  • 349
  • 657