Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por HumanISE

2018

Decision Support Tool for Dynamic Scheduling

Autores
Ferreirinha, L; Santos, AS; Madureira, AM; Varela, MLR; Bastos, JA;

Publicação
Hybrid Intelligent Systems - 18th International Conference on Hybrid Intelligent Systems, HIS 2018, Porto, Portugal, December 13-15, 2018

Abstract
Production scheduling in the presence of real-time events is of great importance for the successful implementation of real-world scheduling systems. Most manufacturing systems operate in dynamic environments vulnerable to various stochastic real-time events which continuously forces reconsideration and revision of pre-established schedules. In an uncertain environment, efficient ways to adapt current solutions to unexpected events, are preferable to solutions that soon become obsolete. This reality motivated us to develop a tool that attempts to start filling the gap between scheduling theory and practice. The developed prototype is connected to the MRP software and uses meta heuristics to generate a predictive schedule. Then, whenever disruptions happen, like arrival of new tasks or cancelation of others, the tool starts rescheduling through a dynamic-event module that combines dispatching rules that best fit the performance measures pre-classified by Kano’s model. The proposed tool was tested in an in-depth computational study with dynamic task releases and stochastic execution time. The results demonstrate the effectiveness of the model. © 2020, Springer Nature Switzerland AG.

2018

Characterizing Parkinson's Disease from Speech Samples Using Deep Structured Learning

Autores
Sousa, L; Braga, D; Madureira, A; Coelho, LP; Renna, F;

Publicação
Proceedings of the Tenth International Conference on Soft Computing and Pattern Recognition, SoCPaR 2018, Porto, Portugal, December 13-15, 2018

Abstract
An early detection of neurodegenerative diseases, such as Parkinson’s disease, can improve therapy effectiveness and, by consequence, the patient’s quality of life. This paper proposes a new methodology for automatic classification of voice samples regarding the presence of acoustic patterns of Parkinson’s disease, using a deep structured neural network. This is a low cost non-invasive approach that can raise alerts in a pre-clinical stage. Aiming to a higher diagnostic detail, it is also an objective to accurately estimate the stage of evolution of the disease allowing to understand in what extent the symptoms have developed. Therefore, two types of classification problems are explored: binary classification and multiclass classification. For binary classification, a deep structured neural network was developed, capable of correctly diagnosing 93.4% of cases. For the multiclass classification scenario, in addition to the deep neural network, a K-nearest neighbour algorithm was also used to establish a reference for comparison purposes, while using a common database. In both cases the original feature set was optimized using principal component analysis and the results showed that the proposed deep structure neural network was able to provide more accurate estimations about the disease’s stage, reaching a score of 84.7%. The obtained results are promising and create the motivation to further explore the model’s flexibility and to pursue better results. © 2020, Springer Nature Switzerland AG.

2018

Manufacturing Services Classification in a Decentralized Supply Chain Using Text Mining

Autores
Akhtar, MD; Manupati, VK; Varela, MLR; Putnik, GD; Madureira, AM; Abraham, A;

Publicação
HYBRID INTELLIGENT SYSTEMS, HIS 2017

Abstract
With the recent development of weblogs and social networks, many supplier industries share their data on different websites and weblogs. Even the Small-to-Medium sized enterprises (SMEs) in the manufacturing sector (as well as non-manufacturing sector) are rapidly strengthening their web presence in order to improve their visibility, customer reachability and remain competitive in the global market. Our study aims to classify data into various groups so that users can identify the most appropriate content based on their choice at any given time. To classify and characterize manufacturing suppliers in supply chain through their capability narratives and textual portfolios obtained from websites of such suppliers online source portals for testing and Naive Bayes and support vector machine (SVM) Classification method at term-level for classification has been used. The performance of the proposed classifier was tested experimentally based on the standard metrics such as precision, recall, and F-measure.

2018

Neurodegenerative Diseases Detection Through Voice Analysis

Autores
Braga, D; Madureira, AM; Coelho, L; Abraham, A;

Publicação
HYBRID INTELLIGENT SYSTEMS, HIS 2017

Abstract
Recent studies have shown that the early detection of neurodegenerative diseases (such as Parkinson) can significantly improve the effectiveness of treatments that increase quality of life, reducing the costs associated with the disease. In this paper, the proposed methodology consists in detecting early signs of Parkinson's disease through speech, with the presence of background noise. The approach uses machine learning algorithms and signal processing techniques to correctly distinguish between healthy controls and Parkinson's disease patients. In order to detect early signs of the disease, a database with patients at different stages of the Parkinson's disease is used. The learning algorithms were optimized for generalization and accuracy. An analysis of the results obtained from the proposed methodology show potential uses of machine learning algorithms in biomedical applications to detect early signs of Parkinson's disease.

2018

Application of the Simulated Annealing Algorithm to Minimize the makespan on the Unrelated Parallel Machine Scheduling Problem with Setup Times

Autores
Amaral, G; Costa, LA; Rocha, AMAC; Varela, LR; Madureira, A;

Publicação
Hybrid Intelligent Systems - 18th International Conference on Hybrid Intelligent Systems, HIS 2018, Porto, Portugal, December 13-15, 2018

Abstract
In this paper, the unrelated parallel machine scheduling problem considering machine-dependent and job sequence-dependent setup times is addressed. This problem involves the scheduling of n jobs on m unrelated machines with setup times in order to minimize the makespan. The Simulated Annealing algorithm is used to solve four sets of small scheduling problems, from the literature, on two unrelated machines: the first one has six jobs, the second has seven jobs and the third and fourth has eight and nine jobs, respectively. The results seem promising when compared with other methods referred in literature. © 2020, Springer Nature Switzerland AG.

2018

A Machine Learning Approach to Contact Databases' Importation for Spam Prevention

Autores
Coelho, D; Madureira, A; Pereira, I; Cunha, B;

Publicação
Hybrid Intelligent Systems - 18th International Conference on Hybrid Intelligent Systems, HIS 2018, Porto, Portugal, December 13-15, 2018

Abstract
This paper aims to provide a solution to a problem shared by online marketing platforms. Many of these platforms are exploited by spammers to ease their job of distributing spam. This can lead to platforms domains being black-listed by ISP’s, which translates to lower deliverability rates and consequently lower profits. Normally, platforms try to counter the problem by using rule-based systems, which require high-maintenance and are not easily editable. Additionally, since analysis occurs when a contact database is imported, the regular approach of judging messages’ contents directly is not an effective solution, as those do not yet exist. The proposed solution, a machine-learning based system for the classification of contact database’s importations, tries to surpass these aforementioned systems by making use of the capabilities introduced by machine-learning technologies, namely, reliability in regards to classification and ease of maintenance. Preliminary results show the legitimacy of this approach, since various algorithms can be successfully applied to it. The most proficient of the ones applied being Ada-boost and Random-forest. © 2020, Springer Nature Switzerland AG.

  • 298
  • 647