Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por HumanISE

2019

Practical Application of a Multi-Agent Systems Society for Energy Management and Control

Autores
Pinto, T; Santos, G; Vale, ZA;

Publicação
Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS '19, Montreal, QC, Canada, May 13-17, 2019

Abstract

2019

Electric Vehicles' User Charging Behaviour Simulator for a Smart City

Autores
Canizes, B; Soares, J; Costa, A; Pinto, T; Lezama, F; Novais, P; Vale, Z;

Publicação
ENERGIES

Abstract
The increase of variable renewable energy generation has brought several new challenges to power and energy systems. Solutions based on storage systems and consumption flexibility are being proposed to balance the variability from generation sources that depend directly on environmental conditions. The widespread use of electric vehicles is seen as a resource that includes both distributed storage capabilities and the potential for consumption (charging) flexibility. However, to take advantage of the full potential of electric vehicles' flexibility, it is essential that proper incentives are provided and that the management is performed with the variation of generation. This paper presents a research study on the impact of the variation of the electricity prices on the behavior of electric vehicle's users. This study compared the benefits when using the variable and fixed charging prices. The variable prices are determined based on the calculation of distribution locational marginal pricing, which are recalculated and adapted continuously accordingly to the users' trips and behavior. A travel simulation tool was developed for simulating real environments taking into account the behavior of real users. Results show that variable-rate of electricity prices demonstrate to be more advantageous to the users, enabling them to reduce charging costs while contributing to the required flexibility for the system.

2019

Hybrid approach based on particle swarm optimization for electricity markets participation

Autores
Faia R.; Pinto T.; Vale Z.; Corchado J.M.;

Publicação
Energy Informatics

Abstract
In many large-scale and time-consuming problems, the application of metaheuristics becomes essential, since these methods enable achieving very close solutions to the exact one in a much shorter time. In this work, we address the problem of portfolio optimization applied to electricity markets negotiation. As in a market environment, decision-making is carried out in very short times, the application of the metaheuristics is necessary. This work proposes a Hybrid model, combining a simplified exact resolution of the method, as a means to obtain the initial solution for a Particle Swarm Optimization (PSO) approach. Results show that the presented approach is able to obtain better results in the metaheuristic search process.

2019

Classification of local energy trading negotiation profiles using artificial neural networks

Autores
Pinto, A; Pinto, T; Praca, I; Vale, Z;

Publicação
IEEE Power and Energy Society General Meeting

Abstract
Electricity markets are evolving into a local trading setting, which makes it for unexperienced players to achieve good agreements and obtain profits. One of the solutions to deal with this issue is to provide players with decision support solutions capable of identifying opponents' negotiation profiles, so that negotiation strategies can be adapted to those profiles in order to reach the best possible results from negotiations. This paper presents an approach that classifies opponents' proposals during a negotiation, to determine which is the typical negotiation profile in which the opponent most relates. The classification process is performed using an artificial neural network approach, and it is able to adapt at each new proposal during the negotiation process, by re-classifying the opponents' negotiation profile according to the most recent actions. In this way, effective decision support is provided to market players, enabling them to adapt the negotiation strategy throughout the negotiations. © 2019 IEEE.

2019

A Review of the Main Machine Learning Methods for Predicting Residential Energy Consumption

Autores
Gonzalez-Briones, A; Hernandez, G; Pinto, T; Vale, Z; Corchado, JM;

Publicação
2019 16th International Conference on the European Energy Market (EEM)

Abstract

2019

Strategic participation in competitive electricity markets: Internal versus sectorial data analysis

Autores
Pinto, T; Falcao Reis, F;

Publicação
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS

Abstract
Current approaches for risk management in energy market participation mostly refer to portfolio optimization for long-term planning, and stochastic approaches to deal with uncertainties related to renewable energy generation and market prices variation. Risk assessment and management as integrated part of actual market negotiation strategies is lacking from the current literature. This paper addresses this gap by proposing a novel model for decision support of players' strategic participation in electricity market negotiations, which considers risk management as a core component of the decision-making process. The proposed approach addresses the adaptation of players' behaviour according to the participation risk, by combining the two most commonly used approaches of forecasting in a company's scope: the internal data analysis, and the external, or sectorial, data analysis. The internal data analysis considers the evaluation of the company's evolution in terms of market power and profitability, while the sectorial analysis addresses the assessment of the competing entities in the market sector using a K-Means-based clustering approach. By balancing these two components, the proposed model enables a dynamic adaptation to the market context, using as reference the expected prices from competitor players, and the market price prediction by means of Artificial Neural Networks (ANN). Results under realistic electricity market simulations using real data from the Iberian electricity market operator show that the proposed approach is able to outperform most state-of-the-art market participation strategies, reaching a higher accumulated profit, by adapting players' actions according to the participation risk.

  • 265
  • 663