2020
Autores
Torres, D; Dias, JP; Restivo, A; Ferreira, HS;
Publicação
PROCEEDINGS OF THE 2020 IEEE/ACM 24TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED SIMULATION AND REAL TIME APPLICATIONS (DS-RT)
Abstract
The continuous spreading of the Internet-of-Things across application domains, aided by the continuous growth on the number of devices and systems that are Internet-connected, created both a rise in the complexity of these systems and made noticeable a lack of human resources with the expertise to design, develop and maintain them. Recent works try to mitigate these issues by creating solutions that abstract the complexity of the systems, such as using visual programming languages. Node-RED, as one of the most common solutions for the visual development IoT systems, stills has several limitations, such as the lack of observability and inadequate debugging mechanisms. In this work, we address some of these limitations by enhancing Node-RED with new features that improve the user's system development, debugging, and understanding tasks. We proceed to empirically evaluate the impact of these enhancements, concluding that, overall, such enhancements reduce the development time and the number of failed attempts to deploy the system.
2020
Autores
Dias, JP; Sousa, TB; Restivo, A; Ferreira, HS;
Publicação
EuroPLoP '20: European Conference on Pattern Languages of Programs 2020, Virtual Event, Germany, 1-4 July, 2020
Abstract
Internet-of-Things systems are assemblies of highly-distributed and heterogeneous parts that, in orchestration, work to provide valuable services to end-users in many scenarios. These systems depend on the correct operation of sensors, actuators, and third-party services, and the failure of a single one can hinder the proper functioning of the whole system, making error detection and recovery of paramount importance, but often overlooked. By drawing inspiration from other research areas, such as cloud, embedded, and mission-critical systems, we present a set of patterns for self-healing IoT systems. We discuss how their implementation can improve system reliability by providing error detection, error recovery, and health mechanisms maintenance. © 2020 ACM.
2020
Autores
Rodrigues, A; Silva, JP; Dias, JP; Ferreira, HS;
Publicação
CoRR
Abstract
2020
Autores
Devezas, JL; Nunes, S;
Publicação
Advances in Information Retrieval - 42nd European Conference on IR Research, ECIR 2020, Lisbon, Portugal, April 14-17, 2020, Proceedings, Part II
Abstract
As entity-oriented search takes the lead in modern search, the need for increasingly flexible tools, capable of motivating innovation in information retrieval research, also becomes more evident. Army ANT is an open source framework that takes a step forward in generalizing information retrieval research, so that modern approaches can be easily integrated in a shared evaluation environment. We present an overview on the system architecture of Army ANT, which has four main abstractions: (i) readers, to iterate over text collections, potentially containing associated entities and triples; (ii) engines, that implement indexing and searching approaches, supporting different retrieval tasks and ranking functions; (iii) databases, to store additional document metadata; and (iv) evaluators, to assess retrieval performance for specific tasks and test collections. We also introduce the command line interface and the web interface, presenting a learn mode as a way to explore, analyze and understand representation and retrieval models, through tracing, score component visualization and documentation. © Springer Nature Switzerland AG 2020.
2020
Autores
Devezas, J; Nunes, S;
Publicação
APPLIED NETWORK SCIENCE
Abstract
The hypergraph-of-entity is a joint representation model for terms, entities and their relations, used as an indexing approach in entity-oriented search. In this work, we characterize the structure of the hypergraph, from a microscopic and macroscopic scale, as well as over time with an increasing number of documents. We use a random walk based approach to estimate shortest distances and node sampling to estimate clustering coefficients. We also propose the calculation of a general mixed hypergraph density measure based on the corresponding bipartite mixed graph. We analyze these statistics for the hypergraph-of-entity, finding that hyperedge-based node degrees are distributed as a power law, while node-based node degrees and hyperedge cardinalities are log-normally distributed. We also find that most statistics tend to converge after an initial period of accentuated growth in the number of documents. We then repeat the analysis over three extensions-materialized through synonym, context, and tf_bin hyperedges-in order to assess their structural impact in the hypergraph. Finally, we focus on the application-specific aspects of the hypergraph-of-entity, in the domain of information retrieval. We analyze the correlation between the retrieval effectiveness and the structural features of the representation model, proposing ranking and anomaly indicators, as useful guides for modifying or extending the hypergraph-of-entity.
2020
Autores
Nunes, S; Little, S; Bhatia, S; Boratto, L; Cabanac, G; Campos, R; Couto, FM; Faralli, S; Frommholz, I; Jatowt, A; Jorge, A; Marras, M; Mayr, P; Stilo, G;
Publicação
SIGIR Forum
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.