Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por HumanISE

2020

Army ANT: A Workbench for Innovation in Entity-Oriented Search

Autores
Devezas, JL; Nunes, S;

Publicação
Advances in Information Retrieval - 42nd European Conference on IR Research, ECIR 2020, Lisbon, Portugal, April 14-17, 2020, Proceedings, Part II

Abstract
As entity-oriented search takes the lead in modern search, the need for increasingly flexible tools, capable of motivating innovation in information retrieval research, also becomes more evident. Army ANT is an open source framework that takes a step forward in generalizing information retrieval research, so that modern approaches can be easily integrated in a shared evaluation environment. We present an overview on the system architecture of Army ANT, which has four main abstractions: (i) readers, to iterate over text collections, potentially containing associated entities and triples; (ii) engines, that implement indexing and searching approaches, supporting different retrieval tasks and ranking functions; (iii) databases, to store additional document metadata; and (iv) evaluators, to assess retrieval performance for specific tasks and test collections. We also introduce the command line interface and the web interface, presenting a learn mode as a way to explore, analyze and understand representation and retrieval models, through tracing, score component visualization and documentation. © Springer Nature Switzerland AG 2020.

2020

Characterizing the hypergraph-of-entity and the structural impact of its extensions

Autores
Devezas, J; Nunes, S;

Publicação
APPLIED NETWORK SCIENCE

Abstract
The hypergraph-of-entity is a joint representation model for terms, entities and their relations, used as an indexing approach in entity-oriented search. In this work, we characterize the structure of the hypergraph, from a microscopic and macroscopic scale, as well as over time with an increasing number of documents. We use a random walk based approach to estimate shortest distances and node sampling to estimate clustering coefficients. We also propose the calculation of a general mixed hypergraph density measure based on the corresponding bipartite mixed graph. We analyze these statistics for the hypergraph-of-entity, finding that hyperedge-based node degrees are distributed as a power law, while node-based node degrees and hyperedge cardinalities are log-normally distributed. We also find that most statistics tend to converge after an initial period of accentuated growth in the number of documents. We then repeat the analysis over three extensions-materialized through synonym, context, and tf_bin hyperedges-in order to assess their structural impact in the hypergraph. Finally, we focus on the application-specific aspects of the hypergraph-of-entity, in the domain of information retrieval. We analyze the correlation between the retrieval effectiveness and the structural features of the representation model, proposing ranking and anomaly indicators, as useful guides for modifying or extending the hypergraph-of-entity.

2020

ECIR 2020 workshops: assessing the impact of going online

Autores
Nunes, S; Little, S; Bhatia, S; Boratto, L; Cabanac, G; Campos, R; Couto, FM; Faralli, S; Frommholz, I; Jatowt, A; Jorge, A; Marras, M; Mayr, P; Stilo, G;

Publicação
SIGIR Forum

Abstract

2020

Source-to-source compilation targeting OpenMP-based automatic parallelization of C applications

Autores
Arabnejad, H; Bispo, J; Cardoso, JMP; Barbosa, JG;

Publicação
JOURNAL OF SUPERCOMPUTING

Abstract
Directive-driven programming models, such as OpenMP, are one solution for exploring the potential parallelism when targeting multicore architectures. Although these approaches significantly help developers, code parallelization is still a non-trivial and time-consuming process, requiring parallel programming skills. Thus, many efforts have been made toward automatic parallelization of the existing sequential code. This article presents AutoPar-Clava, an OpenMP-based automatic parallelization compiler which: (1) statically detects parallelizable loops in C applications; (2) classifies variables used inside the target loop based on their access pattern; (3) supportsreductionclauses on scalar and array variables whenever it is applicable; and (4) generates a C OpenMP parallel code from the input sequential version. The effectiveness of AutoPar-Clava is evaluated by using the NAS and Polyhedral Benchmark suites and targeting a x86-based computing platform. The achieved results are very promising and compare favorably with closely related auto-parallelization compilers, such as Intel C/C++ Compiler (icc), ROSE, TRACO and CETUS.

2020

A Study on Hyperparameter Configuration for Human Activity Recognition

Autores
Crarcia, KD; Carvalho, T; Mendes Moreira, J; Cardoso, JMP; de Carvalho, ACPLF;

Publicação
14TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING MODELS IN INDUSTRIAL AND ENVIRONMENTAL APPLICATIONS (SOCO 2019)

Abstract
Human Activity Recognition is a machine learning task for the classification of human physical activities. Applications for that task have been extensively researched in recent literature, specially due to the benefits of improving quality of life. Since wearable technologies and smartphones have become more ubiquitous, a large amount of information about a person's life has become available. However, since each person has a unique way of performing physical activities, a Human Activity Recognition system needs to be adapted to the characteristics of a person in order to maintain or improve accuracy. Additionally, when smartphones devices are used to collect data, it is necessary to manage its limited resources, so the system can efficiently work for long periods of time. In this paper, we present a semi-supervised ensemble algorithm and an extensive study of the influence of hyperparameter configuration in classification accuracy. We also investigate how the classification accuracy is affected by the person and the activities performed. Experimental results show that it is possible to maintain classification accuracy by adjusting hyperparameters, like window size and window overlap, depending on the person and activity performed. These results motivate the development of a system able to automatically adapt hyperparameter settings for the activity performed by each person.

2020

Improving Performance and Energy Consumption in Embedded Systems via Binary Acceleration: A Survey

Autores
Paulin, N; Ferreira, JC; Cardoso, JMP;

Publicação
ACM COMPUTING SURVEYS

Abstract
The breakdown of Dennard scaling has resulted in a decade-long stall of the maximum operating clock frequencies of processors. To mitigate this issue, computing shifted to multi-core devices. This introduced the need for programming flows and tools that facilitate the expression of workload parallelism at high abstraction levels. However, not all workloads are easily parallelizable, and the minor improvements to processor cores have not significantly increased single-threaded performance. Simultaneously, Instruction Level Parallelism in applications is considerably underexplored. This article reviews notable approaches that focus on exploiting this potential parallelism via automatic generation of specialized hardware from binary code. Although research on this topic spans over more than 20 years, automatic acceleration of software via translation to hardware has gained new importance with the recent trend toward reconfigurable heterogeneous platforms. We characterize this kind of binary acceleration approach and the accelerator architectures on which it relies. We summarize notable state-of-the-art approaches individually and present a taxonomy and comparison. Performance gains from 2.6x to 5.6x are reported, mostly considering bare-metal embedded applications, along with power consumption reductions between 1.3x and 3.9x. We believe the methodologies and results achievable by automatic hardware generation approaches are promising in the context of emergent reconfigurable devices.

  • 199
  • 663