Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por HumanISE

2025

Comparative insights into semantic archival modelling: evaluating RiC-O and ArchOnto representation capabilities

Autores
Giagnolini, L; Koch, I; Tomasi, F; Teixeira Lopes, C;

Publicação
Journal of Documentation

Abstract
Purpose – This study aims to comparatively evaluate two semantic models, ArchOnto (CIDOC CRM based) and Records in Contexts Ontology (RiC-O), for archival representation within the Linked Open Data framework. The research seeks to critically analyse their ability to represent archival documents, events, activities, and provenance through the application on a case study of historical baptism records. Design/methodology/approach – The study adopted a comparative approach, utilising the two models to represent a dataset of baptism records from a Portuguese parish spanning several centuries. This involved information extraction and conversion processes, transforming XML EAD finding aids into RDF to facilitate more explicit semantic representation and analysis. Findings – The analysis revealed distinctive strengths and limitations of each semantic model, providing nuanced insights into their respective capacities for archival description. The findings guide cultural heritage institutions in selecting and implementing the most suitable semantic model for their needs and pave the way for semantic alignment between the two models. Research limitations/implications – Although the case study explored the representation of a wide range of features, potential limitations include the specific contextual constraints of parish records and the need for broader comparative studies across diverse archival contexts. Originality/value – This paper offers original insights into semantic modelling for archival representations by providing a detailed comparative analysis of two ontological approaches. It offers valuable perspectives for archivists, digital humanities researchers, and cultural heritage professionals seeking to enhance the semantic richness of archival descriptions. © 2025 Emerald Publishing Limited

2025

Real-Time Prediction of Wikipedia Articles' Quality

Autores
Moás, PM; Lopes, CT;

Publicação
Linking Theory and Practice of Digital Libraries - 29th International Conference on Theory and Practice of Digital Libraries, TPDL 2025, Tampere, Finland, September 23-26, 2025, Proceedings

Abstract
Wikipedia is the largest and most globally well-known online encyclopedia, but its collaborative nature leads to a significant disparity in article quality. In this work, we explore real-time and automatic quality assessment within Wikipedia through machine-learning. We first constructed a dataset of 36,000 English articles and 145 features, then compared the performance of multiple classification and regression algorithms and studied how the number of classes and features affects the model’s performance. The six-class experiments achieved a classifier accuracy of 64% and a mean absolute error of 0.09 in regression methods, which matches or beats most state-of-the-art approaches. Our model produces similar results on some non-English Wikipedias, but the error is slightly higher on other versions. We have also determined that the features measuring the article’s content and revision history bring the largest performance boost. © 2025 Elsevier B.V., All rights reserved.

2025

Hybrid Teaching and Learning in Higher Education: A Systematic Literature Review

Autores
Gudoniene, D; Staneviciene, E; Huet, I; Dickel, J; Dieng, D; Degroote, J; Rocio, V; Butkiene, R; Casanova, D;

Publicação
SUSTAINABILITY

Abstract
Hybrid teaching, which integrates traditional in-person learning based on students' perspectives where online learning offers a flexible approach to education, combines the benefits of technology with face-to-face interactions. Moreover, teaching and learning in a hybrid way met several challenges for both teachers and learners, including technological problems, time management, communication difficulties, and assessment complexities. This systematic review investigates six main research questions: (1) What pedagogical frameworks are used in hybrid teaching and learning? (2) How can we enhance students' engagement in hybrid teaching and learning? (3) What is the impact of technological integration on hybrid learning scenarios, both for students and teachers? (4) How do training and support measures influence the willingness and ability of university teachers to implement hybrid teaching formats? (5) How do formative assessment and feedback methods in hybrid learning environments enable teachers to effectively monitor student progress and provide tailored support? (6) How does the implementation of hybrid learning affect student learning outcomes? This study identifies the following key themes: technological integration, pedagogical innovation, faculty support, student engagement, assessment practices, and learning outcomes. Our contribution of this literature review is related to teaching and learning by showing teachers the most appropriate way to avoid the challenges encountered when teaching in a hybrid way. These include strong technology integration, innovative pedagogical strategies, strong academic development and support, active student engagement, effective assessment practices, and positive learning outcomes.

2025

Enhancing Digital Libraries Through NLP and Recommender Systems: Current Trends and Future Prospects with Large Language Models

Autores
da Silva Cardoso, H; Rocio, V;

Publicação
Communications in Computer and Information Science - Technology and Innovation in Learning, Teaching and Education

Abstract

2025

INTELIGÊNCIA ARTIFICIAL E APRENDIZAGEM AUTORREGULADA: QUE DESAFIOS?

Autores
Oliveira, I; Pereira, A; Amante, L; Rocio, V;

Publicação
Revista Docência e Cibercultura

Abstract
A investigação sobre o feedback e a autorregulação da aprendizagem tem granjeado interesse com a explosão da Inteligência Artificial e os desafios que coloca à educação e, em particular, à avaliação dos estudantes. Contudo, há mais de 30 anos que se estudam esses processos para compreender como os estudantes regulam a sua própria aprendizagem ao nível motivacional, cognitivo e metacognitivo. Ao assumirem um papel proativo na geração e utilização do feedback estão a avaliar o seu próprio trabalho, o que tem implicações na forma como os professores organizam a avaliação e o apoio na aprendizagem.  Este artigo elabora sobre os desafios múltiplos que se colocam à IA na avaliação digital da aprendizagem, no que respeita ao feedback e a autorregulação bem como na investigação sobre a avaliação digital. Após a discussão desses conceitos e de modelos enquadradores bem como a sua conexão com a avaliação digital conclui-se que é crucial considerar equipas multidisciplinares na investigação com IA e minimizar ou eliminar situações que podem introduzir enviesamentos em termos de género, etnias, culturas e estatutos económico ou social.

2025

Comparison of two problem transformation-based methods in detecting the best performing branch-and-bound procedures for the RCPSP

Autores
Guo, WK; Vanhoucke, M; Coelho, J;

Publicação
EXPERT SYSTEMS WITH APPLICATIONS

Abstract
The branch-and-bound (B&B) procedure is one of the most frequently used methods for solving the resource-constrained project scheduling problem (RCPSP) to obtain optimal solutions and has a rich history in the academic literature. Over the past decades, various variants of this procedure have been proposed, each using slightly different configurations to search for the optimal solution. While most of the configurations perform relatively well for many problem instances, there is, however, no known universal best B&B configuration that works well for all problem instances. In this work, we propose two problem transformation-based machine learning classification methods (binary relevance and classifier chains) to automatically detect the best-performing branch-and-bound configuration for the resource-constrained project scheduling problem. The proposed novel learning models aim to find the relationship between the project characteristics and the performance of a specific B&B configuration. With this obtained knowledge, the best-performing B&B configurations can be predicted, resulting in a better solution. A comprehensive computational experiment is conducted to demonstrate the effectiveness of the proposed classification models and the performance improvements over three categories of methods from the literature, including the latest branch-and-bound configurations, the state-of-the-art classification models in project scheduling, and commonly used clustering algorithms in machine learning. The results show that the proposed classification models can enhance solution quality for the RCPSP without changing the core components of existing algorithms. More specifically, the classifier chains method, when combined with the Back-Propagation Neural Network algorithm, achieves the best performance, outperforming binary relevance, which demonstrates the impact of label correlation on the performance. The experiments also demonstrate the merits of the proposed model in improving the robustness of the solutions. Furthermore, these findings not only highlight the potential of the classification models in detecting best-performing B&B configurations, but also emphasize the need for future work and development to further improve the performance and applicability of these models. © 2025 The Authors

  • 17
  • 677