2025
Autores
Vincenzi, AMR; Kuroishi, PH; Bispo, J; da Veiga, ARC; da Mata, DRC; Azevedo, FB; Paiva, ACR;
Publicação
JOURNAL OF SYSTEMS AND SOFTWARE
Abstract
Mutation testing maybe used to guide test case generation and as a technique to assess the quality of test suites. Despite being used frequently, mutation testing is not so commonly applied in the mobile world. One critical challenge in mutation testing is dealing with its computational cost. Generating mutants, running test cases over each mutant, and analyzing the results may require significant time and resources. This research aims to contribute to reducing Android mutation testing costs. It implements mutation testing operators (traditional and Android-specific) according to mutant schemata (implementing multiple mutants into a single code file). It also describes an Android mutation testing framework developed to execute test cases and determine mutation scores. Additional mutation operators can be implemented in JavaScript and easily integrated into the framework. The overall approach is validated through case studies showing that mutant schemata have advantages over the traditional mutation strategy (one file per mutant). The results show mutant schemata overcome traditional mutation in all evaluated aspects with no additional cost: it takes 8.50% less time for mutant generation, requires 99.78% less disk space, and runs, on average, 6.45% faster than traditional mutation. Moreover, considering sustainability metrics, mutant schemata have 8,18% less carbon footprint than traditional strategy.
2025
Autores
Rodrigues, JF; Cardoso, HL; Lopes, CT;
Publicação
RESEARCH CHALLENGES IN INFORMATION SCIENCE, RCIS 2025, PT II
Abstract
Text readability is vital for effective communication and learning, especially for those with lower information literacy. This research aims to assess Llama 3's ability to grade readability and compare its alignment with established metrics. For that purpose, we create a new dataset of article lead sections from English and Simple English Wikipedia, covering nine categories. The model is prompted to rate the readability of the texts on a grade-level scale, and an in-depth analysis of the results is conducted. While Llama 3 correlates strongly with most metrics, it may underestimate text grade levels.
2025
Autores
Rodrigues, JF; Cardoso, HL; Lopes, CT;
Publicação
COMPANION PROCEEDINGS OF THE ACM WEB CONFERENCE 2025, WWW COMPANION 2025
Abstract
Text simplification converts complex text into simpler language, improving readability and comprehension. This study evaluates the effectiveness of open-source large language models for text simplification across various categories. We created a dataset of 66,620 lead section pairs from English and Simple English Wikipedia, spanning nine categories, and tested Llama 3 for text simplification. We assessed its output for readability, simplicity, and meaning preservation. Results show improved readability, with simplification varying by category. Texts on Time were the most shortened, while Leisurerelated texts had the greatest reduction of words/characters and syllables per sentence. Meaning preservation was most effective for the Objects and Education categories.
2025
Autores
Dias, M; Lopes, CT;
Publicação
RESEARCH CHALLENGES IN INFORMATION SCIENCE, RCIS 2025, PT II
Abstract
Entity linking is an important task in medical natural language processing (NLP) for converting unstructured text into structured data for clinical analysis and semantic interoperability. However, in lower-resource languages, this task is challenging due to the limited availability of domain-specific resources. This paper explores a translation-based cross-lingual entity linking approach using GPT models, GPT-3.5 and GPT-4o, for zero-shot machine translation and entity linking with in-context learning. We evaluate our approach using a Portuguese-English parallel dataset of radiology abstracts. Our results show that chunk-level machine translation outperforms sentence-level translation. Moreover, our translationbased approach to cross-lingual entity linking of UMLS concepts outperformed the multilingual encoder method baseline. However, the in-context learning entity linking approach did not outperform a translation-based approach with a dictionary-based entity linking method.
2025
Autores
Giagnolini, L; Koch, I; Tomasi, F; Teixeira Lopes, C;
Publicação
Journal of Documentation
Abstract
Purpose – This study aims to comparatively evaluate two semantic models, ArchOnto (CIDOC CRM based) and Records in Contexts Ontology (RiC-O), for archival representation within the Linked Open Data framework. The research seeks to critically analyse their ability to represent archival documents, events, activities, and provenance through the application on a case study of historical baptism records. Design/methodology/approach – The study adopted a comparative approach, utilising the two models to represent a dataset of baptism records from a Portuguese parish spanning several centuries. This involved information extraction and conversion processes, transforming XML EAD finding aids into RDF to facilitate more explicit semantic representation and analysis. Findings – The analysis revealed distinctive strengths and limitations of each semantic model, providing nuanced insights into their respective capacities for archival description. The findings guide cultural heritage institutions in selecting and implementing the most suitable semantic model for their needs and pave the way for semantic alignment between the two models. Research limitations/implications – Although the case study explored the representation of a wide range of features, potential limitations include the specific contextual constraints of parish records and the need for broader comparative studies across diverse archival contexts. Originality/value – This paper offers original insights into semantic modelling for archival representations by providing a detailed comparative analysis of two ontological approaches. It offers valuable perspectives for archivists, digital humanities researchers, and cultural heritage professionals seeking to enhance the semantic richness of archival descriptions. © 2025 Emerald Publishing Limited
2025
Autores
Gudoniene, D; Staneviciene, E; Huet, I; Dickel, J; Dieng, D; Degroote, J; Rocio, V; Butkiene, R; Casanova, D;
Publicação
SUSTAINABILITY
Abstract
Hybrid teaching, which integrates traditional in-person learning based on students' perspectives where online learning offers a flexible approach to education, combines the benefits of technology with face-to-face interactions. Moreover, teaching and learning in a hybrid way met several challenges for both teachers and learners, including technological problems, time management, communication difficulties, and assessment complexities. This systematic review investigates six main research questions: (1) What pedagogical frameworks are used in hybrid teaching and learning? (2) How can we enhance students' engagement in hybrid teaching and learning? (3) What is the impact of technological integration on hybrid learning scenarios, both for students and teachers? (4) How do training and support measures influence the willingness and ability of university teachers to implement hybrid teaching formats? (5) How do formative assessment and feedback methods in hybrid learning environments enable teachers to effectively monitor student progress and provide tailored support? (6) How does the implementation of hybrid learning affect student learning outcomes? This study identifies the following key themes: technological integration, pedagogical innovation, faculty support, student engagement, assessment practices, and learning outcomes. Our contribution of this literature review is related to teaching and learning by showing teachers the most appropriate way to avoid the challenges encountered when teaching in a hybrid way. These include strong technology integration, innovative pedagogical strategies, strong academic development and support, active student engagement, effective assessment practices, and positive learning outcomes.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.