2026
Autores
Morgado, L;
Publicação
IMMERSIVE LEARNING RESEARCH NETWORK, ILRN 2025
Abstract
This work reflects upon what Immersion can mean from the perspective of an Artificial Intelligence (AI). Applying the lens of immersive learning theory, it seeks to understand whether this new perspective supports ways for AI participation in cognitive ecologies. By treating AI as a participant rather than a tool, it explores what other participants (humans and other AIs) need to consider in environments where AI can meaningfully engage and contribute to the cognitive ecology, and what the implications are for designing such learning environments. Drawing from the three conceptual dimensions of immersion-System, Narrative, and Agency-this work reinterprets AIs in immersive learning contexts. It outlines practical implications for designing learning environments where AIs are surrounded by external digital services, can interpret a narrative of origins, changes, and structural developments in data, and dynamically respond, making operational and tactical decisions that shape human-AI collaboration. Finally, this work suggests how these insights might influence the future of AI training, proposing that immersive learning theory can inform the development of AIs capable of evolving beyond static models. This paper paves the way for understanding AI as an immersive learner and participant in evolving human-AI cognitive ecosystems.
2026
Autores
Beck, D; Morgado, L; O'Shea, P;
Publicação
IMMERSIVE LEARNING RESEARCH NETWORK, ILRN 2025
Abstract
Since the publication of the 2020 paper, Finding the Gaps About Uses of Immersive Learning Environments: A Survey of Surveys, the landscape of immersive learning environments (ILEs) has continued to evolve rapidly. This update aims to revisit the gaps identified in that previous research and explore emerging trends. We conducted an extensive review of new surveys published after that paper's cut date. Our findings reveal a significant amount of new published reviews (n = 64), more than doubling the original corpus (n = 47). The results highlighted novel themes of usage of immersive environments, helping bridge some 2020 research gaps. This paper discusses those developments and presents a consolidated perspective on the uses of immersive learning environments.
2026
Autores
Rocha, TDJVD; Nunes, RR; Barroso, JMP;
Publicação
Lecture Notes in Networks and Systems
Abstract
The video game industry has grown to become one of the largest in the market, surpassing even the film industry over a decade ago (Statista in Video game industry revenue worldwide 2000–2020). However, the development of games designed with visually impaired players in mind is still almost non-existent when compared to the sheer number of games released yearly. NonVisual Pong is our approach to addressing this challenge, providing blind players with a way to engage in competitive fun through gaming. We took the original Pong game from 1972 and fully adapted it to be played using only a controller—no visual display required. Following the development process, we tested our implementation with experts, discovering that, overall, our game was easy to pick up, required no overly complex setup, and successfully delivered the intended experience. Players enjoyed a balanced challenge and immersion, facilitated by audio cues and the controller’s vibrations. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
2026
Autores
Saadatmand, M; Khan, A; Marín, B; Paiva, CR; Asch, NV; Moran, G; Cammaerts, F; Snoeck, M; Mendes, A;
Publicação
Lecture Notes in Computer Science
Abstract
The evolving landscape of software development demands that software testers continuously adapt to new tools, practices, and acquire new skills. This study investigates software testing competency needs in industry, identifies knowledge gaps in current testing education, and highlights competencies and gaps not addressed in academic literature. This is done by conducting two focus group sessions and interviews with professionals across diverse domains, including railway industry, healthcare, and software consulting and performing a curated small-scale scoping review. The study instrument, co-designed by members of the ENACTEST project consortium, was developed collaboratively and refined through multiple iterations to ensure comprehensive coverage of industry needs and educational gaps. In particular, by performing a thematic qualitative analysis, we report our findings and observations regarding: professional training methods, challenges in offering training in industry, different ways of evaluating the quality of training, identified knowledge gaps with respect to academic education and industry needs, future needs and trends in testing education, and knowledge transfer methods within companies. Finally, the scoping review results confirm knowledge gaps in areas such as AI testing, security testing and soft skills. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
2026
Autores
Coelho, J; Vanhoucke, M;
Publicação
COMPUTERS & OPERATIONS RESEARCH
Abstract
This paper solves the resource-constrained project scheduling problem (RCPSP) with a satisfiability problem (SAT) solver. This paper builds further on various existing SAT models for this well-known project scheduling problem and extends them with two methods to satisfy the resource constraints. Specifically, we use the wellknown minimal forbidden sets and compare them with the so-called covers that are traditionally used in SAT implementations. Moreover, we also implement an existing binary decision trees approach under various settings and extend the model with networks with adders, so far never used for solving the RCPSP, to guarantee that resource constraints are satisfied. The algorithms are tested under different settings on a set of 13,413 project instances with diverse network and resource structures, and the experiments demonstrate that a combination of these approaches help in finding better solutions within a reasonable time. Moreover, 393 new lower bounds, 62 new upper bounds, and 290 optimally solved instances (including 18 from the PSPLIB) have been discovered, which, to the best of our knowledge, had not been found before. The strong performance of the new algorithm motivated additional experiments, and the preliminary results suggest several promising directions for future research.
2026
Autores
Costa, L; Barbosa, S; Cunha, J;
Publicação
Future Gener. Comput. Syst.
Abstract
In recent years, the research community, but also the general public, has raised serious questions about the reproducibility and replicability of scientific work. Since many studies include some kind of computational work, these issues are also a technological challenge, not only in computer science, but also in most research domains. Computational replicability and reproducibility are not easy to achieve due to the variety of computational environments that can be used. Indeed, it is challenging to recreate the same environment via the same frameworks, code, programming languages, dependencies, and so on. We propose a framework, known as SciRep, that supports the configuration, execution, and packaging of computational experiments by defining their code, data, programming languages, dependencies, databases, and commands to be executed. After the initial configuration, the experiments can be executed any number of times, always producing exactly the same results. Our approach allows the creation of a reproducibility package for experiments from multiple scientific fields, from medicine to computer science, which can be re-executed on any computer. The produced package acts as a capsule, holding absolutely everything necessary to re-execute the experiment. To evaluate our framework, we compare it with three state-of-the-art tools and use it to reproduce 18 experiments extracted from published scientific articles. With our approach, we were able to execute 16 (89%) of those experiments, while the others reached only 61%, thus showing that our approach is effective. Moreover, all the experiments that were executed produced the results presented in the original publication. Thus, SciRep was able to reproduce 100% of the experiments it could run. © 2025 The Authors
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.