Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CAP

2017

Vibration and Magnetic Field Sensing Using a Long-Period Grating

Autores
Nascimento, IM; Chesini, G; Baptista, JM; Cordeiro, CMB; Jorge, PAS;

Publicação
IEEE SENSORS JOURNAL

Abstract
A long-period grating (LPG) written on a standard single mode fiber is investigated as a fiber optic sensor for vibration and magnetic field sensing. It is demonstrated the high sensitivity of the device to applied curvature and the possibility to monitor vibration in a wide range of frequencies from 30 Hz to 2000 Hz. The system was tested using intensity-based interrogation scheme, providing a frequency discrimination of 913 mHz. The goal of these tests was to evaluate the sensor as a passive vibration monitor in the detection of changes in resonant vibration frequencies of support infrastructures can provide information on its degradation. Furthermore, taking advantage of the intrinsic sensitivity to micro strain, alternating magnetic fields were also measured using an intensity-based interrogation scheme by coupling a Terfenol-D magnetostrictive rod to a pre-strained LPG sensor, providing a resolution below 5.61 mu T-rms/root Hz from 1.22 mT(rms) up to 2.53 mT(rms).

2017

Towards a Uniform Metrological Assessment of Grating-Based Optical Fiber Sensors: From Refractometers to Biosensors

Autores
Chiavaioli, F; Gouveia, CAJ; Jorge, PAS; Baldini, F;

Publicação
BIOSENSORS-BASEL

Abstract
A metrological assessment of grating-based optical fiber sensors is proposed with the aim of providing an objective evaluation of the performance of this sensor category. Attention was focused on the most common parameters, used to describe the performance of both optical refractometers and biosensors, which encompassed sensitivity, with a distinction between volume or bulk sensitivity and surface sensitivity, resolution, response time, limit of detection, specificity (or selectivity), reusability (or regenerability) and some other parameters of generic interest, such as measurement uncertainty, accuracy, precision, stability, drift, repeatability and reproducibility. Clearly, the concepts discussed here can also be applied to any resonance-based sensor, thus providing the basis for an easier and direct performance comparison of a great number of sensors published in the literature up to now. In addition, common mistakes present in the literature made for the evaluation of sensor performance are highlighted, and lastly a uniform performance assessment is discussed and provided. Finally, some design strategies will be proposed to develop a grating-based optical fiber sensing scheme with improved performance.

2017

Fabrication of Fresnel plates on optical fibres by FIB milling for optical trapping, manipulation and detection of single cells

Autores
Rodrigues Ribeiro, RSR; Dahal, P; Guerreiro, A; Jorge, PAS; Viegas, J;

Publicação
SCIENTIFIC REPORTS

Abstract
The development of economical optical devices with a reduced footprint foreseeing manipulation, sorting and detection of single cells and other micro particles have been encouraged by cellular biology requirements. Nonetheless, researchers are still ambitious for advances in this field. This paper presents Fresnel zone and phase plates fabricated on mode expanded optical fibres for optical trapping. The diffractive structures were fabricated using focused ion beam milling. The zone plates presented in this work have focal distance of similar to 5 mu m, while the focal distance of the phase plates is similar to 10 mu m. The phase plates are implemented in an optical trapping configuration, and 2D manipulation and detection of 8 mu m PMMA beads and yeast cells is reported. This enables new applications for optical trapping setups based on diffractive optical elements on optical fibre tips, where feedback systems can be integrated to automatically detect, manipulate and sort cells.

2017

Curvature Sensitivity Enhancement of Fused Fiber Taper

Autores
da Silveira, CR; Costa, JCWA; Giraldi, MTMR; Franco, MAR; Silva, RM; Jorge, PAS; Frazao, O;

Publicação
2017 SBMO/IEEE MTT-S INTERNATIONAL MICROWAVE AND OPTOELECTRONICS CONFERENCE (IMOC)

Abstract
In this work a numerical model related to an optical inclinometer is presented. This model is based on a fused fiber taper monitored in the transmitted power. Comparisons are made between the numerical and experimental results and it is demonstrated good agreement with them. Thus, the model is proven to be suitable to simulate variation of parameters in order to obtain better performance of the sensor response. The numerical results demonstrate that is possible to enhance the inclinometer sensitivity by varying the legnth and waist of the taper. It is obtained a sensitivity of about 0,7 dB/degree using a taper length and waist of 1200 mu m and 30 mu m, respectively, at an angular range of 35 to 45 degrees.

2017

New developments on fibre optic colorimetric sensors for dissolved CO2 in aquatic environments

Autores
Coelho, L; Pereira, C; Mendes, J; Borges, T; de Almeida, JMMM; Jorge, PAS; Kovacs, B; Balogh, K;

Publicação
OCEANS 2017 - ABERDEEN

Abstract
The detection of dissolved carbon dioxide (dCO(2)) is made possible through a colorimetric effect that occurs in a sensitive membrane. The reaction with dCO(2) changes the pH of the membrane causing a small difference in its colour which results in a characteristic absorbance spectrum band near 435 nm. A sensing platform based on this effect was developed and tested in gaseous and in aqueous environments. It is a combination of a bundle of large core fibre optics (with diameters above 200 mu m) with light emission diodes (LEDs) in the visible range of the spectrum, a silicon photodetector and a polymer membrane sensitive to CO2. A variation in the absorption of 3 / %VV was obtained in the range from 0 to 1.6 % of gaseous CO2 with an estimated response time below 60 seconds.

2017

Combined Microfiber Knot Resonator and Focused Ion Beam-Milled Mach-Zehnder Interferometer for Refractive Index Measurement

Autores
Gomes, AD; Andre, RM; Warren Smith, SC; Dellith, J; Becker, M; Rothhardt, M; Frazao, O;

Publicação
2017 25TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS (OFS)

Abstract
A Mach-Zehnder interferometer was created from a cavity milled in the taper region next to a microfiber knot resonator. A focused ion beam was used to mill the cavity with 47.8 mu m in length. The microfiber knot resonator was created from an 11 mu m diameter taper, produced using a filament fusion splicer. After milling the cavity, the microfiber knot resonator spectrum is still visible. The final response of the presented sensor is a microfiber knot resonator spectrum modulated by the Mach-Zehnder interference spectrum. A preliminary result of -8935 +/- 108 nm/RIU was obtained for the refractive index sensitivity of the cavity component in a refractive index range of n = 1.333 to 1.341. Simultaneous measurement of refractive index and temperature using this combined structure is a future goal.

  • 63
  • 229