2020
Autores
Agelet, FA; Darau, VD; Camanzo, A; Luis, UG; Orgeira Crespo, P; Navarro Medina, F; Luis, UG; Ulloa, C; Botelho, V; Hallak, Y; Pires, AL; Maia, MM; Pereira, AM; Silva, J; Ribeiro, M; Machado, V; Pimenta, J; Silva, S; California, A; Leconte, B; Jamier, R; Auguste, JL; Roy, P; Robalinho, P; Frazão, O;
Publicação
Proceedings of the International Astronautical Congress, IAC
Abstract
CubeSats are becoming an alternative challenge for space exploration. Research in the technology and applicability of these small platforms has received an increasing interest in the last years. They represent an emergent technological market (CAGR growth of 37.91 % in the 2017-2021 period), while a variety of fields like meteorology, climatic research, transportation safety, or navigation is resorting to this technology. As more complex CubeSats missions are defined, a natural increase in the mission power demand occurs. In a scarce-resource environment like the space, this demands the development of new ways of harvesting spacecraft electrical energy. An alternative to traditional energy harvesting systems composed of solar panels and batteries is Wireless Energy Transfer (WET). It originates in the electromagnetic transfer, proven to have two important limitations: high power efficiency decrease at distances bigger than coil size and the need of mobile parts. A new approach is proposed as a solution to these limitations: the possibility of mounting on a 3U CubeSat photo-thermoelectric generator array devices that can convert photon energy to electrical energy via thermal gradient generation. For creating the thermal gradient, a long-range laser source targets cells from each array forming the hybrid photo-thermoelectric plasmonic system (HPTP). Two possible scenarios are presented in terms of mission requirements and analysis: a controlled pulsed large-range laser source located on Earth, in the case of Earth-orbiting missions, or on a hub system, in a deep-space mission. For Earth, Mars and Jupiter, a simulation of the total energy produced by solar panels and the HPTP system is presented to illustrate the potential use of the WiPTherm technology. In each of the scenarios, key measures of effectiveness will be analysed to overcome potential CubeSat and constituent subsystems overheat, by comparison with nominal component and shield temperature profiles in both eclipse and illuminated cases when the HPTP system is not used. Pointing budget accuracy and jitter for targeting the HPTP generator cells and required laser link budget for a planned energy transfer efficiency of up to 10 % of the source power are other challenges covered in the presentation, apart from research topics from a multidisciplinary group covering nanomaterials science, optics, photonics, and CubeSats power systems engineering. Copyright
2019
Autores
Lobo Ribeiro, ABL; Silva, SFO; Frazao, O; Santos, JL;
Publicação
MEASUREMENT SCIENCE AND TECHNOLOGY
Abstract
Bi-core optical fiber structures are studied for applications in sensing. In this paper, an analysis is performed on the spectral characteristics of light propagating in these fibers with central launching core illumination from a standard single mode fiber. Reflective and transmissive configurations are addressed. The characteristics of a reflective bi-core fiber structure for measurement of strain, temperature and absolute value of torsion are investigated and highlights for further research are presented.
2019
Autores
Guerreiro, A; Apolinario, A; Lopes, A; Hierro Rodriguez, A; Aguilar, G; Baptista, JM; Silva, NA; Frazao, O; Quiterio, P; Jorge, P; Rodrigues, P; Moraes, SS; Silva, S; Ferreira, TD; Santos, JL; Araujo, JP;
Publicação
FOURTH INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS
Abstract
We present the design, fabrication and optical characterization of functional metamaterials for optical sensing of Hydrogen based on inexpensive self-assembly processes of metallic nanowires integrated in nanoporous alumina templates([37-42]). The optical properties of these materials strongly depend on the environmental concentration or partial pressure of hydrogen and can be used to develop fully optical sensors that reduce the danger of explosion. Optical metamaterials are artificial media, usually combining metallic and dielectric sub-wavelength structures, that exhibit optical properties that cannot be found in naturally occurring materials. Among these, functional metamaterials offer the added possibility of altering or controlling these properties externally after fabrication, in our case by contact with a hydrogen rich atmosphere. This dependency can be used to design([43-45]) and develop optical sensors that respond to this gas or to chemical compounds that contain or release hydrogen. In this paper we present some designs for hydrogen functional metamaterials and discuss the main parameters relevant in the optimization of their response.
2019
Autores
Lechuga, L; Raptis, I; Jorge, P; Cusano, A;
Publicação
Optics and Laser Technology
Abstract
2019
Autores
Paiva, JS; Jorge, PAS; Ribeiro, RSR; Sampaio, P; Rosa, CC; Cunha, JPS;
Publicação
INTERNATIONAL JOURNAL OF NANOMEDICINE
Abstract
Background: In view of the growing importance of nanotechnologies, the detection/identification of nanoparticles type has been considered of utmost importance. Although the characterization of synthetic/organic nanoparticles is currently considered a priority (eg, drug delivery devices, nanotextiles, theranostic nanoparticles), there are many examples of "naturally" generated nanostructures - for example, extracellular vesicles (EVs), lipoproteins, and virus - that provide useful information about human physiology or clinical conditions. For example, the detection of tumor-related exosomes, a specific type of EVs, in circulating fluids has been contributing to the diagnosis of cancer in an early stage. However, scientists have struggled to find a simple, fast, and low-cost method to accurately detect/identify these nanoparticles, since the majority of them have diameters between 100 and 150 nm, thus being far below the diffraction limit. Methods: This study investigated if, by projecting the information provided from short-term portions of the back-scattered laser light signal collected by a polymeric lensed optical fiber tip dipped into a solution of synthetic nanoparticles into a lower features dimensional space, a discriminant function is able to correctly detect the presence of 100 nm synthetic nanoparticles in distilled water, in different concentration values. Results and discussion: This technique ensured an optimal performance (100% accuracy) in detecting nanoparticles for a concentration above or equal to 3.89 mu g/mL (8.74E+10 particles/mL), and a performance of 90% for concentrations below this value and higher than 1.22E-03 mu g/mL (2.74E+07 particles/mL), values that are compatible with human plasmatic levels of tumor-derived and other types of EVs, as well as lipoproteins currently used as potential biomarkers of cardiovascular diseases. Conclusion: The proposed technique is able to detect synthetic nanoparticles whose dimensions are similar to EVs and other "clinically" relevant nanostructures, and in concentrations equivalent to the majority of cell-derived, platelet-derived EVs and lipoproteins physiological levels. This study can, therefore, provide valuable insights towards the future development of a device for EVs and other biological nanoparticles detection with innovative characteristics.
2019
Autores
dos Santos, PSS; Jorge, PAS; de Almeida, JMMM; Coelho, L;
Publicação
SENSORS
Abstract
We present a portable and low-cost system for interrogation of long-period fiber gratings (LPFGs) costing around a 30th of the price of a typical setup using an optical spectrum analyzer and a broadband light source. The unit is capable of performing real-time monitoring or as a stand-alone data-logger. The proposed technique uses three thermally modulated fiber-coupled laser diodes, sweeping a few nanometers around their central wavelength. The light signal is then modulated by the LPFG and its intensity is acquired by a single photo-detector. Through curve-fitting algorithms the sensor transmission spectrum is reconstructed. Testing and validation were accomplished by inducing variations in the spectral features of an LPFG through changes either in external air temperature from 22 to 425 degrees C or in refractive index (RI) of the surrounding medium from 1.3000 to 1.4240. A dynamic resolution between 3.5 and 1.9 degrees C was achieved, in temperatures from 125 to 325 degrees C. In RI measurements, maximum wavelength and optical power deviations of 2.75 nm and 2.86 dB, respectively, were obtained in the range from 1530 to 1570 nm. The worse RI resolution obtained was 3.47x10(-3). The interrogation platform was then applied in the detection of iron corrosion, expressing wavelength peak values within 1.12 nm from the real value in the region between 1530 and 1570 nm.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.