Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CAP

2025

A machine learning approach for designing surface plasmon resonance PCF based sensors

Autores
Romeiro, AF; Cavalcante, CM; Silva, AO; Costa, JCWA; Giraldi, MTR; Guerreiro, A; Santos, JL;

Publicação
29TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS

Abstract
This study explores the application of machine learning algorithms to optimize the geometry of the plasmonic layer in a surface plasmon resonance photonic crystal fiber sensor. By leveraging the simplicity of linear regression ( LR) alongside the advanced predictive capabilities of the gradient boosted regression (GBR) algorithm, the proposed approach enables accurate prediction and optimization of the plasmonic layer's configuration to achieve a desired spectral response. The integration of LR and GBR with computational simulations yielded impressive results, with an R-2 exceeding 0.97 across all analyzed variables. Moreover, the predictive accuracy demonstrated a remarkably low margin of error, epsilon < 10(-15). This combination of methods provides a robust and efficient pathway for optimizing sensor design, ensuring enhanced performance and reliability in practical applications.

2025

Analysis of a D-Shaped Photonic Crystal Fiber Sensor with Multiple Conducting Layers

Autores
Romeiro, F; Cardoso, P; Miranda, C; Silva, O; Costa, CWA; Giraldi, MR; Santos, L; Baptista, M; Guerreiro, A;

Publicação
Journal of Microwaves, Optoelectronics and Electromagnetic Applications

Abstract
In our study, we conducted a thorough analysis of the spectral characteristics of a D-shaped surface plasmon resonance (SPR) photonic crystal fiber (PCF) refractive index sensor, incorporating a full width at half maximum (FWHM) analysis. We explored four distinct plasmonic materials—silver (Ag), gold (Au), Ga-doped zinc oxide (GZO), and an Ag-nanowire metamaterial—to understand their impact on sensor performance. Our investigation encompassed a comprehensive theoretical modeling and analysis, aiming to unravel the intricate relationship between material composition, sensor geometry, and spectral response. By scrutinizing the sensing properties offered by each material, we laid the groundwork for designing multiplasmonic resonance sensors. Our findings provide valuable insights into how different materials can be harnessed to tailor SPR sensing platforms for diverse applications and environmental conditions, fostering the development of advanced and adaptable detection systems. This research not only advances our understanding of the fundamental principles governing SPR sensor performance but also underscores the potential for leveraging varied plasmonic materials to engineer bespoke sensing solutions optimized for specific requirements and performance metrics. © 2025 SBMO/SBMag.

2025

Gold-coated silver nanorods on side-polished singlemode optical fibers for remote sensing at optical telecommunication wavelengths

Autores
dos Santos, PSS; Mendes, JP; Pastoriza-Santos, I; Juste, JP; de Almeida, JMMM; Coelho, LCC;

Publicação
SENSORS AND ACTUATORS B-CHEMICAL

Abstract
The lower refractive index sensitivity (RIS) of plasmonic nanoparticles (NP) in comparison to their plasmonic thin films counterparts hindered their wide adoption for wavelength-based sensor designs, wasting the NP characteristic field locality. In this context, high aspect-ratio colloidal core-shell Ag@Au nanorods (NRs) are demonstrated to operate effectively at telecommunication wavelengths, showing RIS of 1720 nm/RIU at 1350 nm (O-band) and 2325 nm/RIU at 1550 nm (L-band), representing a five-fold improvement compared to similar Au NRs operating at equivalent wavelengths. Also, these NRs combine the superior optical performance of Ag with the Au chemical stability and biocompatibility. Next, using a side-polished optical fiber, we detected glyphosate, achieving a detection limit improvement from 724 to 85 mg/L by shifting from the O to the C/L optical bands. This work combines the significant scalability and cost-effective advantages of colloidal NPs with enhanced RIS, showing a promising approach suitable for both point-of-care and long-range sensing applications at superior performance than comparable thin film-based sensors in either environmental monitoring and other fields.

2025

Optimization of Magnetoplasmonic Behavior in Ag/Fe Bilayer Nanostructures Towards Refractometric Sensing

Autores
Carvalho, JPM; Dias, BS; Coelho, LCC; de Almeida, JMMM;

Publicação
SENSORS

Abstract
Magneto-optic surface plasmon resonances (MOSPRs) rely on the interaction of magnetic fields with surface plasmon polaritons (SPP) to modulate plasmonic bands with magnetic fields and enhance magneto-optical activity. In the present work, a study on the magnetoplasmonic behavior of Ag/Fe bilayers is carried out by VIS-NIR spectroscopy and backed with SQUID measurements, determining the thickness-dependent magnetization of thin-film samples. The MOSPR sensing properties of Ag/Fe planar bilayers are simulated using Berreman's matrix formalism, from which an optimized structure composed of 15 nm of Ag and 12.5 nm of Fe is obtained. The selected structure is fabricated and characterized for refractive index (RI) sensitivity, reaching 4946 RIU-1 and returning an effective enhancement of refractometric sensitivity after magneto-optical modulation. A new optimized and cobalt-free magnetoplasmonic Ag/Fe bilayer structure is studied, fabricated, and characterized for the first time towards refractometric sensing, to the best of our knowledge. This configuration exhibits potential for enhancing refractometric sensitivity via magneto-optical modulation, thus paving the way towards a simpler, more accessible, and safe type of RI sensor with potential applications in chemical sensors and biosensors.

2025

Invited-Enhancing Optical Sensing with Nanocoatings for Advanced Chemical and Biological Detection

Autores
Coelho L.C.C.; Almeida M.; Carvalho J.; Santos P.; Santos A.; Mendes J.; De Almeida J.M.M.M.;

Publicação
EPJ Web of Conferences

Abstract
Optical sensing exploiting plasmonics and other types of surface waves provides exceptional performance for chemical and biological detection due to its high sensitivity and real-time capabilities. This study explores the integration of thin films with plasmonic, specifically leveraging metallic and dielectric nano structures, fabricated through sputtering and colloidal synthesis techniques. Advanced surface wave excitations such as localized surface plasmon resonances (SPR), Tamm Plasmon Polaritons (TPP), Bloch surface waves, and surface plasmon polaritons (SPP) are used to amplify sensor performance. Simulations and experimental data show that these nanostructured coatings significantly enhance electromagnetic field confinement, leading to improved detection limits and sensor robustness, showcasing promising applications in environmental monitoring, gas detection, and biomedical diagnostics.

2025

Multiple Amplitude Wavelength Modulation Spectroscopy for Concomitant Measurement of Pressure and Concentration of Methane

Autores
Lorenzo Santini; Luís Carlos Costa Coelho; Claudio Floridia;

Publicação

Abstract
Abstract

A novel technique based on multiple amplitude wavelength modulation spectroscopy (MA-WMS) for simultaneous measurement of CH4 gas concentration and pressure was developed and validated both through simulation and experiment, showing good agreement. To capture the spectrum broadening caused by increasing pressure and concomitantly obtain the concentration at the sensor’s location, a laser centered at 1650.9 nm was subjected to multiple amplitude modulation depths while the 2fm signal, normalized by the DC component (an invariant quantity under optical loss), was recorded. While the use of a single and fixed modulation can introduce an ambiguity, as different pairs of pressure and concentration can yield the same value, this ambiguity is eliminated by employing multiple amplitude modulations. In this approach, the intersection point of the three level curves can provide the local pressure and concentration. The proposed system was able to measure concentrations from a few percentage points up to 50% and pressure from 0.02 atm up to 2 atm, with a maximum error of 2% in concentration and 0.06 atm in pressure, respectively. The system was also tested for attenuation insensitivity, demonstrating that measurements were not significantly affected for up to 10 dB applied optical loss.

  • 3
  • 241