2023
Autores
Capela D.; Ferreira M.F.S.; Lima A.; Dias F.; Lopes T.; Guimarães D.; Jorge P.A.S.; Silva N.A.;
Publicação
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY
Abstract
Fast and precise identification of minerals in geological samples is of paramount importance for the study of rock constituents and for technological applications in the context of mining. However, analyzing samples based only on the extrinsic properties of the minerals such as color can often be insufficient, making additional analysis crucial to improve the accuracy of the methods. In this context, Laser-induced breakdown spectroscopy mapping is an interesting technique to perform the study of the distribution of the chemical elements in sample surfaces, thus allowing deeper insights to help the process of mineral identification. In this work, we present the development and deployment of a processing pipeline and algorithm to identify spatial regions of the same mineralogical composition through chemical information in a fast and automatic way. Furthermore, by providing the necessary labels to the results on a training sample, we can turn this unsupervised methodology into a classifier that can be used to generalize and classify minerals in similar but unseen samples. The results obtained show good accuracy in reproducing the expected mineral regions and extend the interpretability of previous unsupervised methods with a visualization tool for cluster assignment, thus paving for future applications in contexts requiring high-throughput mineral identification systems, such as mining.
2023
Autores
Ferreira, MFS; Guimaraes, D; Oliveira, R; Lopes, T; Capela, D; Marrafa, J; Meneses, P; Oliveira, A; Baptista, C; Gomes, T; Moutinho, S; Coelho, J; da Silva, RN; Silva, NA; Jorge, PAS;
Publicação
SENSORS
Abstract
Evaluating the efficiency of surface treatments is a problem of paramount importance for the cork stopper industry. Generically, these treatments create coatings that aim to enhance the impermeability and lubrification of cork stoppers. Yet, current methods of surface analysis are typically time-consuming, destructive, have poor representativity or rely on indirect approaches. In this work, the use of a laser-induced breakdown spectroscopy (LIBS) imaging solution is explored for evaluating the presence of coating along the cylindrical surface and in depth. To test it, several cork stoppers with different shaped areas of untreated surface were analyzed by LIBS, making a rectangular grid of spots with multiple shots per spot, to try to identify the correspondent shape. Results show that this technique can detect the untreated area along with other features, such as leakage and holes, allowing for a high success rate of identification and for its performance at different depths, paving the way for future industry-grade quality control solutions with more complex surface analysis.
2023
Autores
Carvalho, PM; Coelho, CC; Jorge, PAS; de Almeida, JMMM;
Publicação
Proceedings - 28th International Conference on Optical Fiber Sensors, OFS 2023
Abstract
Thin films of Ag/Fe were deposited on the core of multimode optical fibers. The deposited film shows sensitivity to both refractive index and MF changes. Simulation work based on TMM formalism confirms experimental response. © Optica Publishing Group 2023, © 2023 The Author(s)
2023
Autores
Cardoso, VHR; Caldas, P; Giraldi, MTMR; Frazao, O; Costa, JW; Santos, JL;
Publicação
2023 SBMO/IEEE MTT-S INTERNATIONAL MICROWAVE AND OPTOELECTRONICS CONFERENCE, IMOC
Abstract
A sensor based on a balloon-like interferometer and a spring-shaped structure for micro curvature measurement is proposed and experimentally demonstrated. The sensor is composed by singlemode fiber inserted into a capillary tube. The experimental results show micro-curvature sensitivities of -35.04 pm/mu m, -28.07 pm/mu m e -18.7 pm/mu m in the range from 0 to 200 mu m for three resonants dips lambda(1), lambda(2) and lambda(3), respectively. In addition, the sensor has advantages of easy fabrication, low cost, and satisfactory sensitivity, which shows good results of sensing of micro curvature in some applications.
2023
Autores
Soares, L; Perez Herrera, RA; Novais, S; Ferreira, A; Silva, S; Frazao, O;
Publicação
PHOTONICS
Abstract
Process Analytical Technology (PAT) has been increasingly used in the pharmaceutical industry to monitor essential parameters in real-time during pharmaceutical processes. The concentration of Active Pharmaceutical Ingredients (APIs), such as paracetamol, is one of these parameters, and controlling its variations allows for optimization of the production process. In this study, a refractometric sensor, implemented by an interrogation system based on an Erbium-Doped Fiber Ring Cavity (EDFRC), was presented and experimentally demonstrated. The Cavity Ring proposed included a 1 x 3 coupler. One port of the coupler was used to increase the optical power of the system through a Fiber Bragg Grating (FBG), and the other two ports were used as sensing head and reference. The sensor detected variations of paracetamol concentration with a sensitivity of [(-1.00 +/- 0.05) x 10(-3)] nW/(g/kg) and a resolution of 5.53 g/kg. The results demonstrate the potential of this technology as a possible non-invasive PAT tool.
2023
Autores
Robalinho, P; Soares, B; Lobo, A; Silva, S; Frazao, O;
Publicação
SENSORS
Abstract
In this paper, a different Fiber Loop Mirror (FLM) configuration with two circulators is presented. This configuration is demonstrated and characterized for sensing applications. This new design concept was used for strain and torsion discrimination. For strain measurement, the interference fringe displacement has a sensitivity of (0.576 +/- 0.009) pm.mu epsilon(-1). When the FFT (Fast Fourier Transformer) is calculated and the frequency shift and signal amplitude are monitored, the sensitivities are (-2.1 +/- 0.3) x 10(-4) nm(-1) mu epsilon(-1) and (4.9 +/- 0.3) x 10(-7) mu epsilon(-1), respectively. For the characterization in torsion, an FFT peaks variation of (-2.177 +/- 0.002) x 10(-12) nm(-1)/degrees and an amplitude variation of (1.02 +/- 0.06) x 10(-3)/degrees are achieved. This configuration allows the use of a wide range of fiber lengths and with different refractive indices for controlling the free spectral range (FSR) and achieving refractive index differences, i.e., birefringence, higher than 10(-2), which is essential for the development of high sensitivity physical parameter sensors, such as operating on the Vernier effect. Furthermore, this FLM configuration allows the system to be balanced, which is not possible with traditional FLMs.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.