2010
Autores
Montalvo, J; Montero, DS; Vazquez, C; Baptista, JM; Santos, JL;
Publicação
IET OPTOELECTRONICS
Abstract
A low-cost monitoring system for measuring the optical power losses of drop fibres in wavelength division multiplexing (WDM) passive optical networks (PON) is reported. The proposed system is based on radio-frequency intensity modulation and fibre Bragg grating self-referencing measurement techniques using amplitude normalisation. The monitoring unit is built with an optical broadband light source illuminating the PON from the central office for testing purposes, and the signal processing of the measurements is provided by the low-frequency analogue filters and by a lock-in amplifier. The system allows measuring the optical power losses of the PON branches independently, with increased sensitivity in a re-configurable and flexible way. The monitoring technique has been studied and experimentally validated in a coarse WDM-PON prototype, as a first approach to dense WDM-PON applications. The merits of the proposed monitoring system with regards to other WDM-PON monitoring techniques and the scalability of the proposed system to dense WDM-PON architectures are also discussed.
2010
Autores
Silva, C; Coelho, JMP; Caldas, P; Frazao, O; Jorge, PAS; Santos, JL;
Publicação
FIBER AND INTEGRATED OPTICS
Abstract
In the field of aqueous environment studies, long-period fiber gratings are very attractive for the real-time monitoring of physical parameters, such as temperature and salinity. However, due to the fiber jacket removal, these are fragile devices when applied in real conditions, where mechanical loads and contamination with algae and other organic materials must be taken into account. This work describes a refractive index sensing head that has been developed and characterized for in situ measurement of water salinity and resistance to hard conditions.
2010
Autores
Frazao, O; Pereira, DA; Santos, JL; Dias, I; Dias, JM; Vaz, N; Teixeira, M; Quintela, A; Ferreira, J; Ferreira, LA; Araujo, FM;
Publicação
CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY
Abstract
In this work, an innovative fully integrated monitoring infrastructure based on optical fibre sensors was developed and implemented. In the framework of the research project named PROTEU [Tecnologias Avan double dagger adas para a Monitoriza double dagger o de Sistemas Estuarinos e Costeiros (PDCTM/P/MAR/15275/1999)], an 11 km optical fibre cable with Bragg sensors each 500 m was installed from the lagoon mouth to Vouga river, along the bed of the Espinheiro channel, allowing the real-time measurement of water temperature at each sensor location. The results of this project are currently feeding several studies concerning Ria de Aveiro and the surrounding area and are crucial for a continuous assessment and management of the environmental conditions. Meanwhile, a fibre optic sensing system for simultaneous measurement of temperature and salinity based on fibre Bragg grating (FBG) technology was also developed. In the following sections, a complete description of the fabrication process, as well as theoretical and experimental results regarding this particular sensing system, are addressed. Earlier in situ local measurements, as well as the latest remote monitoring and data processing scheme, are described. The developed technology is now being exploited by FiberSensing, an INESC Porto spin-off company devoted to the development of optical fibre Bragg grating-based sensor systems for advanced monitoring applications. The main markets of the company are the ones of structural health monitoring in civil and geotechnical engineering, energy production and distribution, and environment.
2010
Autores
Caldas, P; Jorge, PAS; Araujo, FM; Ferreira, LA; Rego, G; Santos, JL; Berneschi, S; Cosi, F; Soria, S; Pelli, S; Conti, GN;
Publicação
FOURTH EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS
Abstract
In this work we describe the characterization of high Q optical microresonators using an all fiber based system. Silica microspheres fabricated on a fiber tip by electric arc discharge are characterized using a simple interrogation system based on an adiabatic fiber taper coupler and on the collection of scattered radiation by a multimode fiber.
2010
Autores
Diaz Herrera, N; Gonzalez Cano, A; Viegas, D; Santos, JL; Navarrete, MC;
Publicação
SENSORS AND ACTUATORS B-CHEMICAL
Abstract
Experimental results are shown demonstrating that multiple surface plasma waves can be excited in optical fibres at the 1.5 mu m optical communications region for the range of refractive indices of aqueous media using doubly deposited tapered fibre structures, well known to exhibit small or zero sensitivity to polarization. Well-defined plasmon dips were obtained with high sensitivity to the surrounding refractive index. This characteristic, together with the substantial flexibility for local and distributed measurement associated with optical fibre sensing supported by the C-Band technology, indicate that these devices can be very advantageously used for chemical, biological and environmental sensing.
2010
Autores
Richter Trummer, V; Silva, SO; Peixoto, DFC; Frazao, O; Moreira, PMGP; Santos, JL; de Castro, PMST;
Publicação
MEASUREMENT SCIENCE & TECHNOLOGY
Abstract
Fibre Bragg grating (FBG) sensors are finding increased usage in experimental mechanics for monitoring service conditions in structures and other equipment and are currently being tested for process monitoring. In FBG sensors, strain and temperature cause a shift in the Bragg wavelength reflected by the grating contained in these fibres. In situ monitoring of strain and temperature during welding processes increases knowledge of the welded material and the welding process itself. In the present work, two welding processes are monitored using FBG sensors and the complete measurement approach including sensor selection, calibration, instrumentation, welding monitoring and result interpretation is presented. Calibration for strain measurements at constant temperature was performed using a four-point bending test, and temperature calibration was carried out using an oven. Results for a sensor length of 5 mm are presented. Both transient and residual strains were recorded during experiments on metal inert gas and friction stir welding and the possible impact of this monitoring technology is discussed in the light of process optimization and subsequent structural health monitoring.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.