Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CAP

2011

Non-Viral Gene Delivery to Mesenchymal Stem Cells: Methods, Strategies and Application in Bone Tissue Engineering and Regeneration

Autores
Santos, JL; Pandita, D; Rodrigues, J; Pego, AP; Granja, PL; Tomas, H;

Publicação
CURRENT GENE THERAPY

Abstract
Mesenchymal stem cells (MSCs) can be isolated from several tissues in the body, have the ability to self-renewal, show immune suppressive properties and are multipotent, being able to generate various cell types. At present, due to their intrinsic characteristics, MSCs are considered very promising in the area of tissue engineering and regenerative medicine. In this context, genetic modification can be a powerful tool to control the behavior and fate of these cells and be used in the design of new cellular therapies. Viral systems are very effective in the introduction of exogenous genes inside MSCs. However, the risks associated with their use are leading to an increasing search for non-viral approaches to attain the same purpose, even if MSCs have been shown to be more difficult to transfect in this way. In the past few years, progress was made in the development of chemical and physical methods for non-viral gene delivery. Herein, an overview of the application of those methods specifically to MSCs is given and their use in tissue engineering and regenerative medicine therapeutic strategies highlighted using the example of bone tissue. Key issues and future directions in non-viral gene delivery to MSCs are also critically addressed.

2011

Optical refractometer based on large-core air-clad photonic crystal fibers

Autores
Silva, S; Santos, JL; Malcata, FX; Kobelke, J; Schuster, K; Frazao, O;

Publicação
OPTICS LETTERS

Abstract
A large-core air-clad photonic crystal fiber-based sensing structure is described, which is sensitive to refractive index. The sensing head is based on multimodal interference, and relies on a single-mode/large-core air-clad photonic crystal fiber (PCF)/single-mode fiber configuration. Using two distinct large-core air-clad PCF geometries-one for refractive index measurement and the other for temperature compensation, it was possible to implement a sensing head sensitive to refractive index changes in water as induced by temperature variations. The results indicated the high sensitivity of this sensing head to refractive index variations of water, and a resolution of 3: 4 x 10(-5) refractive index units could be achieved. (C) 2011 Optical Society of America

2011

Fiber optic hot-wire flowmeter based on a metallic coated hybrid long period grating/fiber Bragg grating structure

Autores
Caldas, P; Jorge, PAS; Rego, G; Frazao, O; Santos, JL; Ferreira, LA; Araujo, F;

Publicação
APPLIED OPTICS

Abstract
In this work an all-optical hot-wire flowmeter based on a silver coated fiber combining a long period grating and a fiber Bragg grating (FBG) structure is proposed. Light from a pump laser at 1480nm propagating down the fiber is coupled by the long period grating into the fiber cladding and is absorbed by the silver coating deposited on the fiber surface over the Bragg grating structure. This absorption acts like a hot wire raising the fiber temperature locally, which is effectively detected by the FBG resonance shift. The temperature increase depends on the flow speed of the surrounding air, which has the effect of cooling the fiber. It is demonstrated that the Bragg wavelength shift can be related to the flow speed. A flow speed resolution of 0.08m/s is achieved using this new configuration. (C) 2011 Optical Society of America

2011

Optical refractometer based on multimode interference in a pure silica tube

Autores
Coelho, L; Kobelke, J; Schuster, K; Santos, JL; Frazao, O;

Publicação
OPTICAL ENGINEERING

Abstract
A multimode interferometer based-fiber optic sensor with a silica tube section aimed to measure refractive index (RI) variations of surrounding liquids is presented. The sensing head is a silica tube section fusion spliced to single mode fibers operating in transmission. In the splice regions tapers were made to allow the light to be guided in the silica tube while the core is formed by air. This configuration permits measurements of refractive index variations with sensitivities of 101.1, 106.29, and 107.97 nm/RIU considering resonances with different wavelengths. The same resonances were tested with temperature variations with sensitivities achieved of 7.8, 8.7, and 9.3 pm/ degrees C, respectively. The spectral variation associated with one degree temperature change corresponds to a refractive index change of similar to 8 x 10(-5), proving the low temperature dependence compared with sensitivity to RI variations. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3646393]

2011

Simultaneous measurement of three parameters using an all-fiber Mach-Zehnder interferometer based on suspended twin-core fibers

Autores
Oliveira Silva, SFO; Santos, JL; Kobelke, J; Schuster, K; Frazao, O;

Publicação
OPTICAL ENGINEERING

Abstract
We describe an all-fiber Mach-Zehnder interferometric configuration based on a suspended twin-core fiber. Because of the birefringence of the fiber cores, two interferometers are obtained by illuminating the fiber with polarized light. Applying strain, curvature, and temperature to the sensing head, different sensitivities are observed that permit the use of the matrix method to discriminate these three measurands. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3553482]

2011

High-Birefringent Fiber Loop Mirror Sensors With an Output Port Probe

Autores
Frazao, O; Silva, RM; Santos, JL;

Publicação
IEEE PHOTONICS TECHNOLOGY LETTERS

Abstract
Two new configurations of high-birefringent fiber loop mirror with an output port probe are proposed. The two configurations used two couplers spliced between them with unbalanced arms and one output port is used as the probe sensor. The difference between them is that the section length of high-birefringent fiber is located between the two couplers (first new configuration) or spliced in the output port probe (second new configuration). The second new configuration presents great advantage, especially for remote sensing using only one fiber to the sensing head. The two new configurations were compared with the conventional high-birefringent fiber loop mirror when strain is applied and showed similar sensitivities. The first new configuration is studied as an optical refractometer.

  • 143
  • 241