2011
Autores
Statkiewicz Barabach, G; Carvalho, JP; Frazao, O; Olszewski, J; Mergo, P; Santos, JL; Urbanczyk, W;
Publicação
INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS
Abstract
Microstructured optical fibers (MOFs) have been widely studied owing to their potential for obtaining novel transmission, nonlinear and sensing characteristics. Sensing applications of MOFs cover various types of devices for measurements of different physical and specific chemical compounds in gases and liquids employing evanescent field techniques. Such fibers can also be used as active and passive elements in fiber-optic polarimetric and interferometric sensors. We present an in-line fiber modal interferometer fabricated in boron-doped highly birefringent microstructured fiber. The boron-doped region located in the middle of the core decreases the effective index of the fundamental mode and facilitates coupling between the fundamental and the first order mode. The coupling regions have the form of fiber narrowings fabricated using CO2 laser and are distant by a few millimeters. The spectral intensity at the sensor output is modulated only by intermodal interference produced by a short piece of fiber between the two coupling points. Moreover, as the fiber is highly birefringence, each pair of polarization modes produces its own intermodal fringes, which results in the contrast modulation of the overall interference signal observed at the fiber output, and provides an additional degree of freedom to measure simultaneously a pair of measurands.
2011
Autores
Silva, S; Santos, JL; Malcata, FX; Kobelke, J; Schuster, K; Frazao, O;
Publicação
21ST INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS
Abstract
This work describes a large-core air-clad photonic crystal fibre-based sensing structure that is sensitive to refractive index, temperature and strain. The sensing head is based on multimodal interference, and relies on a single mode - large-core air-clad photonic crystal fibre - single mode fibre configuration. Using two distinct large-core air-clad PCF geometries it is possible to obtain an optical spectrum with two dominant loss bands, at wavelengths that have different sensitivities to physical parameters. This characteristic is explored to demonstrate a sensing head that permits the strain-temperature discrimination functionality. It is also shown the large-core air-clad photonic crystal fibre can be applied to implement a sensing head sensitive to the water refractive index changes induced by temperature variations.
2011
Autores
Coelho, L; Silva, SFO; Tafulo, PAR; Santos, JL; Frazao, O; Malcata, FX;
Publicação
INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS
Abstract
Optical fibre sensors for Hydrogen detection at low concentrations has become a growing research area using Palladium as an active medium. Palladium is widely used in hydrogen sensing as it show a high and selective affinity for hydrogen. This metal is capable to absorb hydrogen up to 900 times its own volume which permits that during the expansion mechanical forces are applied in the fibre modifying the optical response. Several optical fibre hydrogen sensor heads coated with Palladium are presented and compared using different working principles: interferometric, intensity and fiber grating-based sensors. These principles were applied in Fabry-Perot cavities, fibre Bragg gratings written in fibre SMF28 with etching in the cladding, multimode interferometers and fibre end micro-mirrors. Palladium thin film coatings over the fibre surface and with thicknesses from 10nm to 350nm were produced by using the sputtering RF technique. These studies were performed in a Hydrogen/Nitrogen atmosphere with Hydrogen concentrations from 0% to 4% (lower limit explosion). The Bragg grating inscribed in a fibre with reduced cladding diameter appears to be one of the best approaches for a fibre optic sensing head for Hydrogen detection. Future work will continue the investigation of other fibre optic structures with Hydrogen sensing capabilities and their application in specific field situations will be assessed.
2011
Autores
Viegas, D; Navarrete, MC; Diaz Herrera, N; Gonzalez Cano, A; Santos, JL; Araujo, FM;
Publicação
21ST INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS
Abstract
A miniature fiber Bragg grating strain rosette is presented. The proposed design is made possible through the development of low curvature radius lossless tapers, thus offering advantages in miniaturization of the rosette configuration. We report on the experimental validation of the miniature rosette design, demonstrating its effective operation.
2011
Autores
Tafulo, PAR; Jorge, PAS; Santos, JL; Frazao, O;
Publicação
INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS
Abstract
In this paper, two novel hybrid multimode/single mode fiber Fabry-Perot (FP) cavities were compared. The cavities fabricated by chemical etching are presented as high temperature and strain sensors. In order to produce this FP cavity a single mode fiber was spliced to a graded index multimode fiber with 62.5 mu m core diameter. The multimode fiber was cut approximately 150 mu m away from the splice. Then the tip of the fiber containing the multimode fiber segment was dipped into a solution of 48% of HF during 8 minutes, creating a concavity due to the fact that the reaction between HF and the germanium doped fiber core is much faster than the reaction between HF and the pure silica cladding. By this method a concavity of approximately 100 mu m deep was created at the fiber tip. Two different FP cavities can be fabricated. The first cavity is obtained when a spliced with an identical tip concavity fiber (Sensor A) and the second is created when a tip concavity is spliced to a single mode fiber (Sensor B). The Fabry-Perot cavities were tested as a high temperature sensor in the range between room temperature and 800 degrees C and as strain sensors. A reversible shift of the interferometric peaks with temperature allowed to estimate a sensitivity of 0.75 +/- 0.03 pm/degrees C and 0.98 +/- 0.04 pm/degrees C for the sensor A and B respectively. For strain measurement sensor A demonstrated a sensitivity of 1.85 +/- 0.07 pm/mu epsilon and sensor B showed a sensitivity of 3.14 +/- 0.05 pm/mu epsilon. The sensors demonstrated the feasibility of low cost fiber optic sensors for high temperature and strain.
2011
Autores
Silva, S; Frazao, O; Santos, JL; Malcata, FX;
Publicação
INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS
Abstract
A simple interrogation technique for refractive index measurement is proposed, using a multimode interference-based fiber tip structure. The fiber probe is a section of a multimode fiber, spliced to a single-mode fiber and interrogated in reflection. The interrogation technique uses two fiber Bragg gratings as discrete optical sources; by means of relative intensity variation of the reflected signals, those sources will provide a measurement of refractive index changes, while taking advantage of the MMI-based fiber tip. The read-out system uses a WDM and two photodetectors to separate both signals. A sensitivity of -5.87/RIU, in the refractive index range 1.30-1.38, was achieved with the proposed configuration.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.