Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CAP

2014

WDM Transmission of 3×1.12-Tb/s PDM-16QAM Superchannels with 6.5-b/s/Hz in a 162.5-GHz Flexible-Grid using only Optical Spectral Shaping

Autores
Carvalho, LHH; Floridia, C; Franciscangelis, C; Parahyba, VE; Silva, EP; Gonzalez, NG; Oliveira, JCRF;

Publicação
Optical Fiber Communication Conference

Abstract

2013

H-2 Sensing Based on a Pd-Coated Tapered-FBG Fabricated by DUV Femtosecond Laser Technique

Autores
Silva, S; Coelho, L; Almeida, JM; Frazao, O; Santos, JL; Malcata, FX; Becker, M; Rothhardt, M; Bartelt, H;

Publicação
IEEE PHOTONICS TECHNOLOGY LETTERS

Abstract
An optical fiber probe sensor based on a tapered-fiber Bragg grating (FBG) coated with 150-nm-thick Pd film is proposed for hydrogen detection. The FBG was written in a 50-mu m-diameter tapered fiber by deep ultraviolet femtosecond laser technology. A second FBG was inscribed in the 125 mu m-fiber section for temperature compensation. The sensing head was able to detect H-2 concentration in the range 0%-1% (v/v) H-2 at room temperature; a maximum sensitivity of 81.8 pm/%(v/v) H-2 was attained with temperature compensation. The influence of the Pd coating over temperature sensitivity of standard and tapered-FBGs is also presented.

2013

Interrogation Sensing Scheme Based on a Figure-of-Eight Fiber Loop Mirror

Autores
Silva, RM; Layeghi, A; Zibaii, MI; Latifi, H; Santos, JL; Ribeiro, ABL; Frazao, O;

Publicação
IEEE PHOTONICS TECHNOLOGY LETTERS

Abstract
A fiber optic interrogation sensor scheme based on a "figure-of-eight" configuration created from a single directional 3 x 3 fiber optic coupler is proposed. Two loops are formed in each arm and one of them contains the sensing head and the other is used as reference signal. A theoretical study based on Jones matrix analysis of this fiber loop mirror combination is reported. The optical configuration is tested as an interrogation scheme for a fiber strain sensor where the spectral response arises from the combination of the reference signal modulated by the sensor signal. The strain sensor configuration shows a phase sensitivity of 6.7 +/- 4.38 x 10(-2) mrad/mu strain by linear regression.

2013

Microcavity Tip Temperature Sensor based on Post-Processing

Autores
Ferreira, MS; Bierlich, J; Schuster, K; Santos, JL; Frazao, O;

Publicação
FIFTH EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS

Abstract
A Fabry-Perot microcavity tip temperature sensor based on a special design double-cladding optical fiber is proposed. The produced fiber has pure silica core and outer cladding and a silica ring doped with phosphorous. The whole ring region is removed by chemical etching post-processing. Consequently, light will be guided in the core region. In a first step, the double-cladding optical fiber is spliced to single mode fiber. Afterwards, the tip is etched in a solution of 48% hydrofluoric acid. The inner cladding will be etched faster, and the core becomes suspended and surrounded by air. The Fabry-Perot microcavity tip sensor is subjected to temperature, and a linear sensitivity of 14.6 pm/degrees C is obtained.

2013

New design for temperature-strain discrimination using fiber Bragg gratings embedded in laminated composites

Autores
Rodriguez Cobo, L; Marques, AT; Lopez Higuera, JM; Santos, JL; Frazao, O;

Publicação
SMART MATERIALS AND STRUCTURES

Abstract
A new smart structure based on fiber Bragg gratings (FBGs) embedded into composite laminates for temperature and strain simultaneous measurement has been designed and experimentally tested. Two holes have been drilled at preset locations in the composite plate to create different strain sensitivities at different locations. The proposed design has been compared to three reference sensing heads also based on embedding FBGs into composite materials. Experimental results agree remarkably well with mechanical simulations and validate all the tested designs for the temperature-strain discrimination. Based on the same principle, another sensing head with a long single FBG embedded has also been designed and experimentally tested, obtaining temperature independent strain measurement.

2013

Next generation of Fabry-Perot sensors for high-temperature

Autores
Ferreira, MS; Roriz, P; Silva, SO; Santos, JL; Frazao, O;

Publicação
OPTICAL FIBER TECHNOLOGY

Abstract
This paper presents an overview of optical fiber sensors based on Fabry-Perot interferometers with a focus on high temperature applications. The next generation of these fiber types interferometers are based in photonic crystal fibers, microfabrication as well as by chemical etching of special structures. High temperature measurements with linear behavior are observed namely in un-doped fibers, i.e., with a pure silica composition. Three new configurations are presented as possible solutions to be considered in extreme conditions.

  • 116
  • 241