Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Vladimiro Miranda was born in Porto, Portugal. He graduated in Electrical Engineering in 1977 and received the Ph.D. degree in Electrical Engineering from FEUP, the Faculty of Engineering of the University of Porto, Portugal, in 1982. He joined FEUP in 1981 and joined INESC in 1985, a top R&D institute in Portugal where he came to be coordinator of the area of Power Systems during the 90’s.

He was a member of the Board of Directors of INESC TEC, Portugal - an R&D private non-profit organization recognized by the Ministry of Science and with the University of Porto as the main associate - for 18 years until June 2018, and holds presently the following responsibilities:

  • Full Professor (Professor Catedrático) at FEUP, University of Porto, Portugal
  • Director-President of INESC P&D Brasil, an R&D private non-profit organization with headquarters in São Paulo, Brazil.
  • Associate Director at INESC TEC, International Affairs.
  • Member of the Doctoral Council of UTAD (University of Trás os Montes e Alto Douro), Portugal.

He is International Scientific Advisor for:

  • IRESEN, Agency associated to the Ministry of Energy, Morocco
  • Hong Kong Polytechnic University, China
  • Instituto de Investigación Tecnológica (Madrid), Spain
  • Instituto de Energía Eléctrica (San Juan), Argentina
  • Laboratory for Biologic and Chemical Defense of the Portuguese Army, Portugal

He was invited as Honorary Professor of the Novi Sad University, Serbia, and was President of INESC Macau, China. In 1996 and 1997 he stayed as Visiting Full Professor in the University of Macau, China. In 2005 he was Visiting Professor at the Federal University of Pará (UFPA), Brazil, and in 2015-2018 he was visiting researcher at the Federal University of Santa Catarina (UFSC), Brazil.

Prof. Miranda has been serving in the Administration Board of spin-off companies created within the INESC system. He has also served as research project evaluator for the governmental science organizations of Portugal, Norway, Croatia, South Africa, Chile, Brazil and Argentina. For the Government of this latter country, he acted as external auditor in the process of evaluation of research institutions.

He has supervised, co-supervised or cooperated in the supervision of a large number of PhD and MSc theses e power systems in several countries and universities such as in Portugal, Brazil, Argentina, Bosnia, China, Ecuador, Norway or Sweden. 

He has been responsible for many research projects at international level, in the European Union, United States and Brazil, and has authored or co-authored over 200 publications, especially in areas related with Power Systems and the application of Computational Intelligence to Power Systems.

He has been a member (at times the chairman) of the organizing or scientific committees of several important conferences in his areas of expertise such as PMAPS, ISAP, IEEE Power Tech, etc.

Prof. Miranda is an IEEE Fellow.

He is the recipient in 2013 of the IEEE Power Engineering Society Ramakumar Family Renewable Energy Excellence Award.

He is a member of the IEEE Distinguished Lecturer Program.

Curriculum LATTES:  http://lattes.cnpq.br/5824178098755298

Scopus Author ID: 35581693000  -  AuthenticusID: R-000-HPD

(end)

Detalhes

Detalhes

  • Nome

    Vladimiro Miranda
  • Cargo

    Diretor
  • Desde

    01 março 1985
007
Publicações

2024

Virtual power plant optimal dispatch considering power-to-hydrogen systems

Autores
Rodrigues, L; Soares, T; Rezende, I; Fontoura, J; Miranda, V;

Publicação
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY

Abstract
Power-to-Hydrogen (P2H) clean systems have been increasingly adopted for Virtual Power Plant (VPP) to drive system decarbonization. However, current models for the joint operation of VPP and P2H often disregard the full impact on grid operation or hydrogen supply to multiple consumers. This paper contributes with a VPP operating model considering a full Alternating Current Optimal Power Flow (AC OPF) while integrating different paths for the use of green hydrogen, such as supplying hydrogen to a Combined Heat and Power (CHP), industry and local hydrogen consumers. The proposed framework is tested using a 37-bus distribution grid and the results illustrate the benefits that a P2H plant can bring to the VPP in economic, grid operation and environmental terms. An important conclusion is that depending on the prices of the different hydrogen services, the P2H plant can increase the levels of self-sufficiency and security of supply of the VPP, decrease the operating costs, and integrate more renewables.

2024

Impact of the C-rates and AC-AC RTE on the annual cycles and operation cost of different battery technologies that provide market services

Autores
Agamez Arias, P; Miranda, V;

Publicação
2024 IEEE 22nd Mediterranean Electrotechnical Conference, MELECON 2024

Abstract
This paper aims to study battery response under two operation strategies to analyze the annual cycles and operation costs (revenues) via sensitivity analysis. A battery model that considers performance parameters (AC-AC RTE, DOD, and C-rates) for different technologies is approached to identify how these parameters influence battery behavior and revenue. Strategies refer to (A) energy arbitrage, EA, and (B) EA and the provision of tertiary reserve. Simulations conducted for real data from Portuguese electricity and regulation markets showed regardless of the strategy used, the annual cycles and revenue are dominated by the performance parameters, instead of price volatility. In addition, for batteries with higher C-rates, as the AC-AC RTE is reduced up to 80%, the annual cycles and revenues are significantly reduced to 50% and 45% respectively, regarding its ideal model (100% AC-AC RTE). For lower C-rates, the annual cycles and revenues are slightly reduced with AC-AC RTE reductions. Specifically, strategy B revealed that annual cycles and revenue could also be influenced by the capacity requirements and the control area where batteries are providing services. © 2024 IEEE.

2024

Quantifying the Impact of Multi-area Policies on Operational Reserve Adequacy and Market Prices: a Sequential Monte Carlo-based Approach

Autores
Alves, I; Zarkovic, SD; Carvalho, L; Miranda, V; Rosa, M; Vieira, P;

Publicação
2024 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE, ISGT EUROPE

Abstract
This paper addresses the challenges of integrating large shares of renewable energy sources into the power system, focusing on managing operational reserves in multi-area systems and their long-term adequacy. Unlike previous studies, this paper investigates the long-term impact of procurement and activation of operational reserve in adjacent areas, considering energy scheduling and interconnection line constraints. Three procurement schemes for multi-area energy and reserve exchanges are proposed and analyzed through Sequential Monte Carlo Simulation. These schemes vary in their approach to interconnection line capacity constraints and the simultaneous or phased procurement of energy and synchronized reserve. The mathematical operationalization of these schemes is achieved through simple linear programming models, facilitating the quantification of marginal prices for both products. The impact of these schemes on operational reserve adequacy, marginal prices, and interconnection line utilization is demonstrated using configurations of the IEEE RTS 96 system. This analysis incorporates long-term uncertainty and diverse operational conditions and provides valuable insights into the interplay between energy and reserve procurement strategies in multi-area systems.

2024

Long-term storage expansion planning considering uncertainty and intra-annual time series

Autores
Abreu, T; Carvalho, L; Miranda, V;

Publicação
2024 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE, ISGT EUROPE

Abstract
Long-term storage expansion planning has usually employed representative days and intra-annual time series aggregation methodologies to reduce the computation complexity. This paper proposes a shift on the approach to the economic evaluation of these systems by implementing an intra-annual time series cost evaluation that considers different uncertainty trajectories. This methodology aims to determine the best possible investment strategies for the available computational budget using strategy game-based decision-making models, as Monte Carlo tree search. The proof of concept is illustrated by a single-bus equivalent test system and compared to a deterministic evaluation for a limited uncertainty model.

2023

A Data-Driven Approach to Estimate the Flexibility Maps in Multiple TSO-DSO Connections

Autores
Silva, J; Sumaili, J; Silva, B; Carvalho, L; Retorta, F; Staudt, M; Miranda, V;

Publicação
IEEE TRANSACTIONS ON POWER SYSTEMS

Abstract
This paper presents a methodology to estimate flexibility existing on TSO-DSO borderline, for the cases where multiple TSO-DSO connections exist (meshed grids). To do so, the work conducted exploits previous developments regarding flexibility representation through the adoption of active and reactive power flexibility maps and extends the concept for the cases where multiple TSO-DSO connection exists, using data-driven approach to determine the equivalent impedance between TSO nodes, preserving the anonymity regarding sensitive grid information, such as the topology. This paper also provides numerical validation followed by real-world demonstration of the methodology proposed.

Teses
supervisionadas

2024

State Estimation for Evolving Power Systems Paradigms

Autor
Gil da Silva Sampaio

Instituição
UP-FEUP

2023

Resilience Enhancement Solutions for Distribution Networks

Autor
Inês Maria Afonso Trigo de Freitas Alves

Instituição
UP-FEUP

2023

A Techno-Economic Feasibility Analysis of a Hydrogen Power Plant in a Market Environment

Autor
Luís Manuel Dias Rodrigues

Instituição
UP-FEUP

2023

Integrated Renewable Storage Systems Under Artificial Intelligence Decision Models

Autor
Tiago João Amorim Abreu

Instituição
UP-FEUP

2023

A Bid Strategy Evaluation of a Battery Energy Storage System in the day-ahead energy market considering future opportunities costs

Autor
Pedro Bernardo Pereira dos Santos

Instituição
UP-FEUP