Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Vitor Manuel Filipe
  • Cluster

    Informática
  • Cargo

    Investigador Coordenador
  • Desde

    01 outubro 2012
004
Publicações

2023

Tree Trunks Cross-Platform Detection Using Deep Learning Strategies for Forestry Operations

Autores
da Silva, DQ; dos Santos, FN; Filipe, V; Sousa, AJ;

Publicação
ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 1

Abstract

2023

X-Wines: A Wine Dataset for Recommender Systems and Machine Learning

Autores
de Azambuja, RX; Morais, AJ; Filipe, V;

Publicação
BIG DATA AND COGNITIVE COMPUTING

Abstract
In the current technological scenario of artificial intelligence growth, especially using machine learning, large datasets are necessary. Recommender systems appear with increasing frequency with different techniques for information filtering. Few large wine datasets are available for use with wine recommender systems. This work presents X-Wines, a new and consistent wine dataset containing 100,000 instances and 21 million real evaluations carried out by users. Data were collected on the open Web in 2022 and pre-processed for wider free use. They refer to the scale 1–5 ratings carried out over a period of 10 years (2012–2021) for wines produced in 62 different countries. A demonstration of some applications using X-Wines in the scope of recommender systems with deep learning algorithms is also presented.

2023

Bin Picking for Ship-Building Logistics Using Perception and Grasping Systems

Autores
Cordeiro, A; Souza, JP; Costa, CM; Filipe, V; Rocha, LF; Silva, MF;

Publicação
ROBOTICS

Abstract
Bin picking is a challenging task involving many research domains within the perception and grasping fields, for which there are no perfect and reliable solutions available that are applicable to a wide range of unstructured and cluttered environments present in industrial factories and logistics centers. This paper contributes with research on the topic of object segmentation in cluttered scenarios, independent of previous object shape knowledge, for textured and textureless objects. In addition, it addresses the demand for extended datasets in deep learning tasks with realistic data. We propose a solution using a Mask R-CNN for 2D object segmentation, trained with real data acquired from a RGB-D sensor and synthetic data generated in Blender, combined with 3D point-cloud segmentation to extract a segmented point cloud belonging to a single object from the bin. Next, it is employed a re-configurable pipeline for 6-DoF object pose estimation, followed by a grasp planner to select a feasible grasp pose. The experimental results show that the object segmentation approach is efficient and accurate in cluttered scenarios with several occlusions. The neural network model was trained with both real and simulated data, enhancing the success rate from the previous classical segmentation, displaying an overall grasping success rate of 87.5%.

2023

Artificial Intelligence in Veterinary Imaging: An Overview

Autores
Pereira, AI; Franco-Gonçalo, P; Leite, P; Ribeiro, A; Alves-Pimenta, MS; Colaço, B; Loureiro, C; Gonçalves, L; Filipe, V; Ginja, M;

Publicação
Veterinary Sciences

Abstract
Artificial intelligence and machine learning have been increasingly used in the medical imaging field in the past few years. The evaluation of medical images is very subjective and complex, and therefore the application of artificial intelligence and deep learning methods to automatize the analysis process would be very beneficial. A lot of researchers have been applying these methods to image analysis diagnosis, developing software capable of assisting veterinary doctors or radiologists in their daily practice. This article details the main methodologies used to develop software applications on machine learning and how veterinarians with an interest in this field can benefit from such methodologies. The main goal of this study is to offer veterinary professionals a simple guide to enable them to understand the basics of artificial intelligence and machine learning and the concepts such as deep learning, convolutional neural networks, transfer learning, and the performance evaluation method. The language is adapted for medical technicians, and the work already published in this field is reviewed for application in the imaging diagnosis of different animal body systems: musculoskeletal, thoracic, nervous, and abdominal.

2022

Intelligent Monitoring and Management Platform for the Prevention of Olive Pests and Diseases, Including IoT with Sensing, Georeferencing and Image Acquisition Capabilities Through Computer Vision

Autores
Alves A.; Jorge Morais A.; Filipe V.; Alberto Pereira J.;

Publicação
Lecture Notes in Networks and Systems

Abstract
Climate change affects global temperature and precipitation patterns. These effects, in turn, influence the intensity and, in some cases, the frequency of extreme environmental events, such as forest fires, hurricanes, heat waves, floods, droughts, and storms. In general, these events can be particularly conducive to the appearance of plant pests and diseases. The availability of models and a data collection system is crucial to manage pests and diseases in sustainable agricultural ecosystems. Agricultural ecosystems are known to be complex, multivariable, and unpredictable. It is important to anticipate crop pests and diseases in order to improve its control in a more ecological and economical way (e.g., precision in the use of pesticides). The development of an intelligent monitoring and management platform for the prevention of pests and diseases in olive groves at Trás-os- Montes region will be very beneficial. This platform must: a) integrate data from multiple data sources such as sensory data (e.g., temperature), biological observations (e.g., insect counts), georeferenced data (e.g., altitude) or digital images (e.g., plant images); b) systematize these data into a regional repository; c) provide relevant forecasts for pest and diseases. Convolutional Neural Networks (CNNs) can be a valuable tool for the identification and classification of images acquired by Internet of Things (IoT).

Teses
supervisionadas

2022

ForestMP: Multimodal perception system for robotics in forestry applications

Autor
Daniel Queirós da Silva

Instituição
UP-FEUP

2022

Ferramenta de apoio à inspeção automóvel

Autor
João André Carvalho da Silva

Instituição
UTAD

2022

BeDriven plataforma de mobilidade

Autor
João Daniel Oliveira Ribeiro

Instituição
UTAD

2022

Two steps closer to automated canine hip dysplasia diagnosis

Autor
Diogo Emanuel Moreira da Silva

Instituição
UTAD

2022

Desenvolvimento de uma plataforma para o ensino de robótica móvel

Autor
João Bastos Pintor

Instituição
UTAD