Detalhes
Nome
Vitor Manuel FilipeCluster
InformáticaCargo
Investigador CoordenadorDesde
01 outubro 2012
Nacionalidade
PortugalCentro
Computação Centrada no Humano e Ciência da InformaçãoContactos
+351222094199
vitor.m.filipe@inesctec.pt
2023
Autores
da Silva, DQ; dos Santos, FN; Filipe, V; Sousa, AJ;
Publicação
ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 1
Abstract
2023
Autores
de Azambuja, RX; Morais, AJ; Filipe, V;
Publicação
BIG DATA AND COGNITIVE COMPUTING
Abstract
2023
Autores
Cordeiro, A; Souza, JP; Costa, CM; Filipe, V; Rocha, LF; Silva, MF;
Publicação
ROBOTICS
Abstract
2023
Autores
Pereira, AI; Franco-Gonçalo, P; Leite, P; Ribeiro, A; Alves-Pimenta, MS; Colaço, B; Loureiro, C; Gonçalves, L; Filipe, V; Ginja, M;
Publicação
Veterinary Sciences
Abstract
2022
Autores
Alves A.; Jorge Morais A.; Filipe V.; Alberto Pereira J.;
Publicação
Lecture Notes in Networks and Systems
Abstract
Climate change affects global temperature and precipitation patterns. These effects, in turn, influence the intensity and, in some cases, the frequency of extreme environmental events, such as forest fires, hurricanes, heat waves, floods, droughts, and storms. In general, these events can be particularly conducive to the appearance of plant pests and diseases. The availability of models and a data collection system is crucial to manage pests and diseases in sustainable agricultural ecosystems. Agricultural ecosystems are known to be complex, multivariable, and unpredictable. It is important to anticipate crop pests and diseases in order to improve its control in a more ecological and economical way (e.g., precision in the use of pesticides). The development of an intelligent monitoring and management platform for the prevention of pests and diseases in olive groves at Trás-os- Montes region will be very beneficial. This platform must: a) integrate data from multiple data sources such as sensory data (e.g., temperature), biological observations (e.g., insect counts), georeferenced data (e.g., altitude) or digital images (e.g., plant images); b) systematize these data into a regional repository; c) provide relevant forecasts for pest and diseases. Convolutional Neural Networks (CNNs) can be a valuable tool for the identification and classification of images acquired by Internet of Things (IoT).
Teses supervisionadas
2022
Autor
Daniel Queirós da Silva
Instituição
UP-FEUP
2022
Autor
João André Carvalho da Silva
Instituição
UTAD
2022
Autor
João Daniel Oliveira Ribeiro
Instituição
UTAD
2022
Autor
Diogo Emanuel Moreira da Silva
Instituição
UTAD
2022
Autor
João Bastos Pintor
Instituição
UTAD
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.