Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Licenciado e Mestre em Engenharia Agronómica, com forte ênfase na internacionalização, tendo realizado parte da formação na renomada Universidade Estadual Paulista Júlio de Mesquita Filho - Campus de Botucatu - Faculdade de Ciências Agronômicas, Brasil, e também tendo realizado um programa de mobilidade de 18 meses na prestigiada The University of Adelaide, Austrália onde foi homenageado com “Joanne Kanas Memorial Medal”. Realizou a sua dissertação de mestrado na Faculdade de Ciências da Universidade do Porto (FCUP) no âmbito da modelação da cultura da vinha onde aplicou dados de deteção remota e ferramentas de machine learning a qual obteve a classificação de 20/20. Participou nos projetos “WineSpectra” e "VineSpec" de transferência de tecnologia entre a FCUP e empresas do sector vitivinícola o qual teve como objetivo a modelação da condição hídrica da videira na região do Douro com base em técnicas de deteção remota. Atualmente é aluno de Doutoramento em Ciências Agrárias, detentor de uma bolsa da FCT (SFRH/BD/145182/2019) cujo tema envolve aplicação de biologia de sistemas no contexto de agricultura de precisão. Durante o início de seu doutoramento, foi selecionado para participar do concorrido “9th Advanced Training Course on Land Remote Sensing: Agriculture” promovido pela European Space Agency (ESA) sediado na renomeada Université catholique de Louvain, em Louvain-la-Neuve, Bélgica, durante o período de 16 a 20 de setembro de 2019. Está envolvido nos projetos “Metbots” e “SpecTOM”, os quais desenvolve parte dos seus trabalhos de Doutoramento. É também Assistente Convidado da FCUP, onde leciona a cadeira Aplicações à Agricultura, do Mestrado em Deteção Remota, e também cadeiras de agricultura, das Licenciaturas em Engenharia Agronómica e Arquitectura Paisagística. Desenvolveu conhecimento sobre o processo de investigação (planeamento, implementação e comunicação de resultados) quer em contexto académico quer empresarial.

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Renan Tosin
  • Cargo

    Estudante Externo
  • Desde

    01 dezembro 2019
003
Publicações

2024

A New Approach for Element Characterization of Grapevine Tissue with Laser-Induced Breakdown Spectroscopy

Autores
Tosin, R; Monteiro-Silva, F; Martins, R; Cunha, M;

Publicação
HORTICULTURAE

Abstract
The determination of grape quality parameters is intricately linked to the mineral composition of the fruit; this relationship is increasingly affected by the impacts of climate change. The conventional chemical methodologies employed for the mineral quantification of grape tissues are expensive and impracticable for widespread commercial applications. This paper utilized Laser-Induced Breakdown Spectroscopy (LIBS) to analyze the mineral constituents within the skin, pulp, and seeds of two distinct Vitis vinifera cultivars: a white cultivar (Loureiro) and a red cultivar (Vinh & atilde;o). The primary objective was to discriminate the potential variations in the calcium (Ca), magnesium (Mg), and nitrogen (N) concentrations and water content among different grape tissues, explaining their consequential impact on the metabolic constitution of the grapes and, by extension, their influence on various quality parameters. Additionally, the study compared the mineral contents of the white and red grape cultivars across three distinct time points post veraison. Significant differences (p < 0.05) were observed between the Loureiro and Vinh & atilde;o cultivars in Ca concentrations across all the dates and tissues and for Mg in the skin and pulp, N in the pulp and seeds, and water content in the skin and pulp. In the Vinh & atilde;o cultivar, Ca differences were found in the pulp across the dates, N in the seeds, and water content in the skin, pulp, and seeds. Comparing the cultivars within tissues, Ca exhibited differences in the pulp, Mg in the skin and pulp, N in the pulp and seeds, and water content in the skin, pulp, and seeds. These findings provide insights into the relationship between the grape mineral and water content, climatic factors, and viticulture practices within a changing climate.

2024

Bi-directional hyperspectral reconstruction of cherry tomato: diagnosis of internal tissues maturation stage and composition

Autores
Tosin, R; Cunha, M; Monteiro Silva, F; Santos, F; Barroso, T; Martins, R;

Publicação
Frontiers in Plant Science

Abstract
Introduction: Precision monitoring maturity in climacteric fruits like tomato is crucial for minimising losses within the food supply chain and enhancing pre- and post-harvest production and utilisation. Objectives: This paper introduces an approach to analyse the precision maturation of tomato using hyperspectral tomography-like. Methods: A novel bi-directional spectral reconstruction method is presented, leveraging visible to near-infrared (Vis-NIR) information gathered from tomato spectra and their internal tissues (skin, pulp, and seeds). The study, encompassing 118 tomatoes at various maturation stages, employs a multi-block hierarchical principal component analysis combined with partial least squares for bi-directional reconstruction. The approach involves predicting internal tissue spectra by decomposing the overall tomato spectral information, creating a superset with eight latent variables for each tissue. The reverse process also utilises eight latent variables for reconstructing skin, pulp, and seed spectral data. Results: The reconstruction of the tomato spectra presents a mean absolute percentage error of 30.44 % and 5.37 %, 5.25 % and 6.42 % and Pearson’s correlation coefficient of 0.85, 0.98, 0.99 and 0.99 for the skin, pulp and seed, respectively. Quality parameters, including soluble solid content (%), chlorophyll (a.u.), lycopene (a.u.), and puncture force (N), were assessed and modelled with PLS with the original and reconstructed datasets, presenting a range of R2 higher than 0.84 in the reconstructed dataset. An empirical demonstration of the tomato maturation in the internal tissues revealed the dynamic of the chlorophyll and lycopene in the different tissues during the maturation process. Conclusion: The proposed approach for inner tomato tissue spectral inference is highly reliable, provides early indications and is easy to operate. This study highlights the potential of Vis-NIR devices in precision fruit maturation assessment, surpassing conventional labour-intensive techniques in cost-effectiveness and efficiency. The implications of this advancement extend to various agronomic and food chain applications, promising substantial improvements in monitoring and enhancing fruit quality. Copyright © 2024 Tosin, Cunha, Monteiro-Silva, Santos, Barroso and Martins.

2024

Plant Disease Diagnosis Based on Hyperspectral Sensing: Comparative Analysis of Parametric Spectral Vegetation Indices and Nonparametric Gaussian Process Classification Approaches

Autores
Reis Pereira, M; Verrelst, J; Tosin, R; Rivera Caicedo, JP; Tavares, F; Neves dos Santos, F; Cunha, M;

Publicação
Agronomy

Abstract
Early and accurate disease diagnosis is pivotal for effective phytosanitary management strategies in agriculture. Hyperspectral sensing has emerged as a promising tool for early disease detection, yet challenges remain in effectively harnessing its potential. This study compares parametric spectral Vegetation Indices (VIs) and a nonparametric Gaussian Process Classification based on an Automated Spectral Band Analysis Tool (GPC-BAT) for diagnosing plant bacterial diseases using hyperspectral data. The study conducted experiments on tomato plants in controlled conditions and kiwi plants in field settings to assess the performance of VIs and GPC-BAT. In the tomato experiment, the modeling processes were applied to classify the spectral data measured on the healthy class of plants (sprayed with water only) and discriminate them from the data captured on plants inoculated with the two bacterial suspensions (108 CFU mL-1). In the kiwi experiment, the standard modeling results of the spectral data collected on nonsymptomatic plants were compared to the ones obtained using symptomatic plants’ spectral data. VIs, known for their simplicity in extracting biophysical information, successfully distinguished healthy and diseased tissues in both plant species. The overall accuracy achieved was 63% and 71% for tomato and kiwi, respectively. Limitations were observed, particularly in differentiating specific disease infections accurately. On the other hand, GPC-BAT, after feature reduction, showcased enhanced accuracy in identifying healthy and diseased tissues. The overall accuracy ranged from 70% to 75% in the tomato and kiwi case studies. Despite its effectiveness, the model faced challenges in accurately predicting certain disease infections, especially in the early stages. Comparative analysis revealed commonalities and differences in the spectral bands identified by both approaches, with overlaps in critical regions across plant species. Notably, these spectral regions corresponded to the absorption regions of various photosynthetic pigments and structural components affected by bacterial infections in plant leaves. The study underscores the potential of hyperspectral sensing in disease diagnosis and highlights the strengths and limitations of VIs and GPC-BAT. The identified spectral features hold biological significance, suggesting correlations between bacterial infections and alterations in plant pigments and structural components. Future research avenues could focus on refining these approaches for improved accuracy in diagnosing diverse plant–pathogen interactions, thereby aiding disease diagnosis. Specifically, efforts could be directed towards adapting these methodologies for early detection, even before symptom manifestation, to better manage agricultural diseases.

2023

Exploring the Impact of Water Stress on Grapevine Gene Expression and Polyphenol Production: Insights for Developing a Systems Biology Model †

Autores
Portis, I; Tosin, R; Oliveira Pinto, R; Pereira Dias, L; Santos, C; Martins, R; Cunha, M;

Publicação
Engineering Proceedings

Abstract
This scientific paper delves into the effects of water stress on grapevines, specifically focusing on gene expression and polyphenol production. We conducted a controlled greenhouse experiment with three hydric conditions and analyzed the expression of genes related to polyphenol biosynthesis. Our results revealed significant differences in the expression of ABCC1, a gene linked to anthocyanin metabolism, under different irrigation treatments. These findings highlight the importance of anthocyanins in grapevine responses to abiotic stresses. By integrating genomics, metabolomics, and systems biology, this study contributes to our understanding of grapevine physiology under water stress conditions and offers insights into developing sensor technologies for real-world applications in viticulture. © 2023 by the authors.

2023

Enhancing Kiwi Bacterial Canker Leaf Assessment: Integrating Hyperspectral-Based Vegetation Indexes in Predictive Modeling †

Autores
Reis Pereira, M; Tosin, R; Martins, C; Dos Santos, FN; Tavares, F; Cunha, M;

Publicação
Engineering Proceedings

Abstract
The potential of hyperspectral UV–VIS–NIR reflectance for the in-field, non-destructive discrimination of bacterial canker on kiwi leaves caused by Pseudomonas syringae pv. actinidiae (Psa) was analyzed. Spectral data (325–1075 nm) of twenty kiwi plants were obtained in vivo and in situ with a handheld spectroradiometer in two commercial kiwi orchards in northern Portugal over 15 weeks, resulting in 504 spectral measurements. The suitability of different vegetation indexes (VIs) and applied predictive models (based on supervised machine learning algorithms) for classifying non-symptomatic and symptomatic kiwi leaves was evaluated. Eight distinct types of VIs were identified as relevant for disease diagnosis, highlighting the relevance of the Green, Red, Red-Edge, and NIR spectral features. The class prediction was achieved with good model metrics, achieving an accuracy of 0.71, kappa of 0.42, sensitivity of 0.67, specificity of 0.75, and F1 of 0.67. Thus, the present findings demonstrated the potential of hyperspectral UV–VIS–NIR reflectance for the non-destructive discrimination of bacterial canker on kiwi leaves. © 2023 by the authors.