Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

003
Publicações

2021

On Filter Generalization for Music Bandwidth Extension Using Deep Neural Networks

Autores
Sulun, S; Davies, MEP;

Publicação
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING

Abstract

2019

Temporal convolutional networks for musical audio beat tracking

Autores
Davies, MEP; Böck, S;

Publicação
European Signal Processing Conference

Abstract

2019

Seed: Resynthesizing environmental sounds from examples

Autores
Bernardes, G; Aly, L; Davies, MEP;

Publicação
SMC 2016 - 13th Sound and Music Computing Conference, Proceedings

Abstract
In this paper we present SEED, a generative system capable of arbitrarily extending recorded environmental sounds while preserving their inherent structure. The system architecture is grounded in concepts from concatenative sound synthesis and includes three top-level modules for segmentation, analysis, and generation. An input audio signal is first temporally segmented into a collection of audio segments, which are then reduced into a dictionary of audio classes by means of an agglomerative clustering algorithm. This representation, together with a concatenation cost between audio segment boundaries, is finally used to generate sequences of audio segments with arbitrarily long duration. The system output can be varied in the generation process by the simple and yet effective parametric control over the creation of the natural, temporally coherent, and varied audio renderings of environmental sounds. Copyright: © 2016 First author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

2019

Multi-Task Learning of Tempo and Beat: Learning One to Improve the Other

Autores
Böck, S; Davies, MEP; Knees, P;

Publicação
Proceedings of the 20th International Society for Music Information Retrieval Conference, ISMIR 2019, Delft, The Netherlands, November 4-8, 2019

Abstract

2019

The Harmonix Set: Beats, Downbeats, and Functional Segment Annotations of Western Popular Music

Autores
Nieto, O; McCallum, M; Davies, MEP; Robertson, A; Stark, AM; Egozy, E;

Publicação
Proceedings of the 20th International Society for Music Information Retrieval Conference, ISMIR 2019, Delft, The Netherlands, November 4-8, 2019

Abstract

Teses
supervisionadas

2021

A machine learning based digital forensics application to detect tampered multimedia files

Autor
Sara Cardoso Ferreira

Instituição
UP-FCUP

2018

Avaliação da performance de uma rede IP-MPLS

Autor
Helena Cristina Goncalves de Moura Moutinho

Instituição
UP-FEUP

2018

Gestão da aparelhagem elétrica numa casa inteligente

Autor
Gonçalo Cunha Baptista Rodrigues Carvalho

Instituição
UP-FEUP

2017

Comportamento dos Preços do MIBEL Tendo em Conta Cenários de Crescimento do Número de Veículos Elétricos

Autor
António José Mendes Cruz de Sousa

Instituição
UP-FEUP

2016

Problemas de cortes e Empacotamentos Bidimensional em Nível: Estratégias baseadas em Modelagem Matemática

Autor
Vanessa Munhoz Reina Bezerra

Instituição
Outra