Detalhes
Nome
Maria Eduarda SilvaCargo
Investigador CoordenadorDesde
01 janeiro 2022
Nacionalidade
PortugalCentro
Laboratório de Inteligência Artificial e Apoio à DecisãoContactos
+351220402963
maria.e.silva@inesctec.pt
2024
Autores
Silva, VF; Silva, ME; Ribeiro, P; Silva, F;
Publicação
INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS
Abstract
In recent years, there has been a surge in the prevalence of high- and multidimensional temporal data across various scientific disciplines. These datasets are characterized by their vast size and challenging potential for analysis. Such data typically exhibit serial and cross-dependency and possess high dimensionality, thereby introducing additional complexities to conventional time series analysis methods. To address these challenges, a recent and complementary approach has emerged, known as network-based analysis methods for multivariate time series. In univariate settings, quantile graphs have been employed to capture temporal transition properties and reduce data dimensionality by mapping observations to a smaller set of sample quantiles. To confront the increasingly prominent issue of high dimensionality, we propose an extension of quantile graphs into a multivariate variant, which we term Multilayer Quantile Graphs. In this innovative mapping, each time series is transformed into a quantile graph, and inter-layer connections are established to link contemporaneous quantiles of pairwise series. This enables the analysis of dynamic transitions across multiple dimensions. In this study, we demonstrate the effectiveness of this new mapping using synthetic and benchmark multivariate time series datasets. We delve into the resulting network's topological structures, extract network features, and employ these features for original dataset analysis. Furthermore, we compare our results with a recent method from the literature. The resulting multilayer network offers a significant reduction in the dimensionality of the original data while capturing serial and cross-dimensional transitions. This approach facilitates the characterization and analysis of large multivariate time series datasets through network analysis techniques.
2024
Autores
Costa, EA; Silva, ME;
Publicação
Statistical Journal of the IAOS
Abstract
Predictors of macroeconomic indicators rely primarily on traditional data sourced from National Statistical Offices. However, new data sources made available from recent technological advancements, namely data from online activities, have the potential to bring about fresh perspectives on monitoring economic activities and enhance the accuracy of forecasting. This paper reviews the literature on predicting macroeconomic indicators, such as the gross domestic product, unemployment rate, consumer price index or private consumption, based on online activity data sourced from Google Trends, Twitter (rebranded to X) and mobile devices. Based on a systematic search of publications indexed on the Web of Science and Scopus databases, the analysis of a final set of 56 publications covers the publication history of the data sources, the methods used to model the data and the predictive accuracy of information from such data sources. The paper also discusses the limitations and challenges of using online activity data for macroeconomic predictions. The review concludes that online activity data can be a valuable source of information for predicting macroeconomic indicators. However, one must consider certain limitations and challenges to improve the models' accuracy and reliability. © 2024 - IOS Press. All rights reserved.
2024
Autores
Costa, EA; Silva, ME; Gbylik Sikorska, M;
Publicação
SOCIO-ECONOMIC PLANNING SCIENCES
Abstract
Policymakers often have to make decisions based on incomplete economic data because of the usual delay in publishing official statistics. To circumvent this issue, researchers use data from Google Trends (GT) as an early indicator of economic performance. Such data have emerged in the literature as alternative and complementary predictors of macroeconomic outcomes, such as the unemployment rate, featuring readiness, public availability and no costs. This study deals with extensive daily GT data to develop a framework to nowcast monthly unemployment rates tailored to work with real-time data availability, resorting to Mixed Data Sampling (MIDAS) regressions. Portugal is chosen as a use case for the methodology since extracting GT data requires the selection of culturally dependent keywords. The nowcasting period spans 2019 to 2021, encompassing the time frame in which the coronavirus pandemic initiated. The findings indicate that using daily GT data with MIDAS provides timely and accurate insights into the unemployment rate, especially during the COVID-19 pandemic, showing accuracy gains even when compared to nowcasts obtained from typical monthly GT data via traditional ARMAX models.
2024
Autores
Barbosa, S; Silva, ME; Rousseau, D;
Publicação
Abstract
2023
Autores
Silva, I; Silva, ME; Pereira, I; McCabe, B;
Publicação
ENTROPY
Abstract
Censored data are frequently found in diverse fields including environmental monitoring, medicine, economics and social sciences. Censoring occurs when observations are available only for a restricted range, e.g., due to a detection limit. Ignoring censoring produces biased estimates and unreliable statistical inference. The aim of this work is to contribute to the modelling of time series of counts under censoring using convolution closed infinitely divisible (CCID) models. The emphasis is on estimation and inference problems, using Bayesian approaches with Approximate Bayesian Computation (ABC) and Gibbs sampler with Data Augmentation (GDA) algorithms.
Teses supervisionadas
2023
Autor
Eduardo André Moura Martins Costa
Instituição
UP-FCUP
2023
Autor
Moyses Xavier Fontoura Neto
Instituição
UP-FCUP
2023
Autor
Alberto Jorge Machado de Almeida de Sousa Rocha
Instituição
UP-FCUP
2023
Autor
Guilherme de Abreu Jeremias
Instituição
UP-FCUP
2023
Autor
Vanessa Alexandra Freitas da Silva
Instituição
UP-FCUP
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.