O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
de interesse




Resource definition and allocation for a multi-asset portfolio with heterogeneous degradation

Dias, L; Leitao, A; Guimaraes, L;


When making long-term plans for their asset portfolios, decision-makers have to define a priori a maintenance budget that is to be shared among the several assets and managed throughout the planning period. During the planning period, the a priori budget is then allocated by managers to different operation and maintenance interventions ensuring the overall performance of the system. Because asset degradation is stochastic, a considerable amount of uncertainty is associated with this problem. Hence, to define a robust budget, it is essential to account for several degradation scenarios pertaining to the individual condition of each asset. This paper presents a novel mathematical formulation to tackle this problem in a heterogeneous multiasset portfolio. The proposed mathematical model was formulated as a mixed-integer programming two-stage stochastic optimization model with mean-variance constraints to minimize the number of scenarios with an insufficient budget. A Gamma process was used to model the condition of each individual asset while taking into consideration different technological features and operating conditions. We compared the solutions obtained with our model to alternative practices in a set of generated instances covering different types of multi-asset portfolios. This comparison allowed us to explore the value of modeling uncertainty and how it affects the generated solutions. The proposed approach led to gains in performance of up to 50% depending on the level of uncertainty. Furthermore, the model was validated using real-world data from a utility company working with portfolios of power transformers. The results obtained showed that the company could reduce costs by as much as 40%. Further conclusions showed that the cost-saving potential was higher in asset portfolios in worse condition and that defining a priori operation and maintenance interventions led to worse results. Finally, the results showcased how different decision-maker risk-levels affect the value of taking uncertainty into account.