Detalhes
Nome
Luis Lino FerreiraCargo
Investigador SéniorDesde
14 dezembro 2022
Nacionalidade
PortugalCentro
Computação Centrada no Humano e Ciência da InformaçãoContactos
+351222094000
luis.l.ferreira@inesctec.pt
2025
Autores
Fonseca, T; Ferreira, LL; Cabral, B; Severino, R; Nweye, K; Ghose, D; Nagy, Z;
Publicação
Energy Inform.
Abstract
2025
Autores
Fonseca, T; Sousa, C; Venâncio, R; Pires, P; Severino, R; Rodrigues, P; Paiva, P; Ferreira, LL;
Publicação
CoRR
Abstract
2025
Autores
Gonçalves, J; Silva, M; Cabral, B; Dias, T; Maia, E; Praça, I; Severino, R; Ferreira, LL;
Publicação
CYBERSECURITY, EICC 2025
Abstract
Deep Learning (DL) has emerged as a powerful tool for vulnerability detection, often outperforming traditional solutions. However, developing effective DL models requires large amounts of real-world data, which can be difficult to obtain in sufficient quantities. To address this challenge, DiverseVul dataset has been curated as one of the largest datasets of vulnerable and non-vulnerable C/C++ functions extracted exclusively from real-world projects. Its goal is to provide high-quality, large-scale samples for training DL models. Nevertheless, during our study several inconsistencies were identified in the raw dataset while applying pre-processing techniques, highlighting the need for a refined version. In this work, we present a refined version of DiverseVul dataset, which is used to fine-tune a large language model, LLaMA 3.2, for vulnerability detection. Experimental results show that the use of pre-processing techniques led to an improvement in performance, with the model achieving an F1-Score of 66%, a competitive result when compared to our baseline, which achieved a 47% F1-Score in software vulnerability detection.
2024
Autores
Cabral, B; Fonseca, T; Sousa, C; Ferreira, LL;
Publicação
CoRR
Abstract
2024
Autores
Fonseca, T; Ferreira, LL; Cabral, B; Severino, R; Praça, I;
Publicação
CoRR
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.