Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Luis Lino Ferreira
  • Cargo

    Investigador Sénior
  • Desde

    14 dezembro 2022
Publicações

2025

EVLearn: extending the cityLearn framework with electric vehicle simulation

Autores
Fonseca, T; Ferreira, LL; Cabral, B; Severino, R; Nweye, K; Ghose, D; Nagy, Z;

Publicação
Energy Inform.

Abstract

2025

Control of Renewable Energy Communities using AI and Real-World Data

Autores
Fonseca, T; Sousa, C; Venâncio, R; Pires, P; Severino, R; Rodrigues, P; Paiva, P; Ferreira, LL;

Publicação
CoRR

Abstract

2025

Evaluating LLaMA 3.2 for Software Vulnerability Detection

Autores
Gonçalves, J; Silva, M; Cabral, B; Dias, T; Maia, E; Praça, I; Severino, R; Ferreira, LL;

Publicação
CYBERSECURITY, EICC 2025

Abstract
Deep Learning (DL) has emerged as a powerful tool for vulnerability detection, often outperforming traditional solutions. However, developing effective DL models requires large amounts of real-world data, which can be difficult to obtain in sufficient quantities. To address this challenge, DiverseVul dataset has been curated as one of the largest datasets of vulnerable and non-vulnerable C/C++ functions extracted exclusively from real-world projects. Its goal is to provide high-quality, large-scale samples for training DL models. Nevertheless, during our study several inconsistencies were identified in the raw dataset while applying pre-processing techniques, highlighting the need for a refined version. In this work, we present a refined version of DiverseVul dataset, which is used to fine-tune a large language model, LLaMA 3.2, for vulnerability detection. Experimental results show that the use of pre-processing techniques led to an improvement in performance, with the model achieving an F1-Score of 66%, a competitive result when compared to our baseline, which achieved a 47% F1-Score in software vulnerability detection.

2024

FlexiGen: Stochastic Dataset Generator for Electric Vehicle Charging Energy Flexibility

Autores
Cabral, B; Fonseca, T; Sousa, C; Ferreira, LL;

Publicação
CoRR

Abstract

2024

EnergAIze: Multi Agent Deep Deterministic Policy Gradient for Vehicle to Grid Energy Management

Autores
Fonseca, T; Ferreira, LL; Cabral, B; Severino, R; Praça, I;

Publicação
CoRR

Abstract