Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Leandro Almeida Rodrigues
  • Cargo

    Assistente de Investigação
  • Desde

    09 fevereiro 2022
007
Publicações

2023

Toward Grapevine Digital Ampelometry Through Vision Deep Learning Models

Autores
Magalhaes, SC; Castro, L; Rodrigues, L; Padilha, TC; de Carvalho, F; dos Santos, FN; Pinho, T; Moreira, G; Cunha, J; Cunha, M; Silva, P; Moreira, AP;

Publicação
IEEE SENSORS JOURNAL

Abstract
Several thousand grapevine varieties exist, with even more naming identifiers. Adequate specialized labor is not available for proper classification or identification of grapevines, making the value of commercial vines uncertain. Traditional methods, such as genetic analysis or ampelometry, are time-consuming, expensive, and often require expert skills that are even rarer. New vision-based systems benefit from advanced and innovative technology and can be used by nonexperts in ampelometry. To this end, deep learning (DL) and machine learning (ML) approaches have been successfully applied for classification purposes. This work extends the state of the art by applying digital ampelometry techniques to larger grapevine varieties. We benchmarked MobileNet v2, ResNet-34, and VGG-11-BN DL classifiers to assess their ability for digital ampelography. In our experiment, all the models could identify the vines' varieties through the leaf with a weighted F1 score higher than 92%.

2023

Computer Vision and Deep Learning as Tools for Leveraging Dynamic Phenological Classification in Vegetable Crops

Autores
Rodrigues, L; Magalhaes, SA; da Silva, DQ; dos Santos, FN; Cunha, M;

Publicação
AGRONOMY-BASEL

Abstract
The efficiency of agricultural practices depends on the timing of their execution. Environmental conditions, such as rainfall, and crop-related traits, such as plant phenology, determine the success of practices such as irrigation. Moreover, plant phenology, the seasonal timing of biological events (e.g., cotyledon emergence), is strongly influenced by genetic, environmental, and management conditions. Therefore, assessing the timing the of crops' phenological events and their spatiotemporal variability can improve decision making, allowing the thorough planning and timely execution of agricultural operations. Conventional techniques for crop phenology monitoring, such as field observations, can be prone to error, labour-intensive, and inefficient, particularly for crops with rapid growth and not very defined phenophases, such as vegetable crops. Thus, developing an accurate phenology monitoring system for vegetable crops is an important step towards sustainable practices. This paper evaluates the ability of computer vision (CV) techniques coupled with deep learning (DL) (CV_DL) as tools for the dynamic phenological classification of multiple vegetable crops at the subfield level, i.e., within the plot. Three DL models from the Single Shot Multibox Detector (SSD) architecture (SSD Inception v2, SSD MobileNet v2, and SSD ResNet 50) and one from You Only Look Once (YOLO) architecture (YOLO v4) were benchmarked through a custom dataset containing images of eight vegetable crops between emergence and harvest. The proposed benchmark includes the individual pairing of each model with the images of each crop. On average, YOLO v4 performed better than the SSD models, reaching an F1-Score of 85.5%, a mean average precision of 79.9%, and a balanced accuracy of 87.0%. In addition, YOLO v4 was tested with all available data approaching a real mixed cropping system. Hence, the same model can classify multiple vegetable crops across the growing season, allowing the accurate mapping of phenological dynamics. This study is the first to evaluate the potential of CV_DL for vegetable crops' phenological research, a pivotal step towards automating decision support systems for precision horticulture.

2023

Enhancing Grape Brix Prediction in Precision Viticulture: A Benchmarking Study of Predictive Models using Hyperspectral Proximal Sensors

Autores
Santos-Campos, M; Tosin, R; Rodrigues, L; Gonçalves, I; Barbosa, C; Martins, R; Santos, F; Cunha, M;

Publicação
The 3rd International Electronic Conference on Agronomy

Abstract

2023

Synergizing Crop Growth Models and Digital Phenotyping: The Design of a Cost-Effective Internet of Things-Based Sensing Network

Autores
Rodrigues, L; Moura, P; Terra, F; Carvalho, AM; Sarmento, J; dos Santos, FN; Cunha, M;

Publicação
The 3rd International Electronic Conference on Agronomy

Abstract

2023

In-Field Hyperspectral Proximal Sensing for Estimating Grapevine Water Status to Support Smart Precision Viticulture

Autores
David, E; Tosin, R; Gonçalves, I; Rodrigues, L; Barbosa, C; Santos, F; Pinheiro, H; Martins, R; Cunha, M;

Publicação
The 3rd International Electronic Conference on Agronomy

Abstract