Cookies
Usamos cookies para melhorar nosso site e a sua experiência. Ao continuar a navegar no site, você aceita a nossa política de cookies. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    José Ricardo Andrade
  • Cluster

    Energia
  • Cargo

    Investigador
  • Desde

    01 julho 2016
006
Publicações

2018

Data economy for prosumers in a smart grid ecosystem

Autores
Bessa, RJ; Rua, D; Abreu, C; Machado, P; Andrade, JR; Pinto, R; Goncalves, C; Reis, M;

Publicação
e-Energy 2018 - Proceedings of the 9th ACM International Conference on Future Energy Systems

Abstract
Smart grids technologies are enablers of new business models for domestic consumers with local flexibility (generation, loads, storage) and where access to data is a key requirement in the value stream. However, legislation on personal data privacy and protection imposes the need to develop local models for flexibility modeling and forecasting and exchange models instead of personal data. This paper describes the functional architecture of an home energy management system (HEMS) and its optimization functions. A set of data-driven models, embedded in the HEMS, are discussed for improving renewable energy forecasting skill and modeling multi-period flexibility of distributed energy resources. © 2018 Copyright held by the owner/author(s).

2017

Probabilistic Price Forecasting for Day-Ahead and Intraday Markets: Beyond the Statistical Model

Autores
Andrade, JR; Filipe, J; Reis, M; Bessa, RJ;

Publicação
SUSTAINABILITY

Abstract
Forecasting the hourly spot price of day-ahead and intraday markets is particularly challenging in electric power systems characterized by high installed capacity of renewable energy technologies. In particular, periods with low and high price levels are difficult to predict due to a limited number of representative cases in the historical dataset, which leads to forecast bias problems and wide forecast intervals. Moreover, these markets also require the inclusion of multiple explanatory variables, which increases the complexity of the model without guaranteeing a forecasting skill improvement. This paper explores information from daily futures contract trading and forecast of the daily average spot price to correct point and probabilistic forecasting bias. It also shows that an adequate choice of explanatory variables and use of simple models like linear quantile regression can lead to highly accurate spot price point and probabilistic forecasts. In terms of point forecast, the mean absolute error was 3.03 Euro/MWh for day-ahead market and a maximum value of 2.53 Euro/MWh was obtained for intraday session 6. The probabilistic forecast results show sharp forecast intervals and deviations from perfect calibration below 7% for all market sessions.

2017

Improving Renewable Energy Forecasting With a Grid of Numerical Weather Predictions

Autores
Andrade, JR; Bessa, RJ;

Publicação
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY

Abstract
In the last two decades, renewable energy forecasting progressed toward the development of advanced physical and statistical algorithms aiming at improving point and probabilistic forecast skill. This paper describes a forecasting framework to explore information from a grid of numerical weather predictions (NWP) applied to both wind and solar energy. The methodology combines the gradient boosting trees algorithm with feature engineering techniques that extract the maximum information from the NWP grid. Compared to a model that only considers one NWP point for a specific location, the results show an average point forecast improvement (in terms of mean absolute error) of 16.09% and 12.85% for solar and wind power, respectively. The probabilistic forecast improvement, in terms of continuous ranked probabilistic score, was 13.11% and 12.06%, respectively.